Purification and characterization of a dual function 3-dehydroquinate dehydratase from Amycolatopsis methanolica

Studies on hydroaromatic metabolism in the actinomycete Amycolatopsis methanolica revealed that the organism grows rapidly on quinate (but not on shikimate) as sole carbon- and energy source. Quinate is initially converted into the shikimate pathway intermediate 3-dehydroquinate by an inducible NAD+...

Full description

Saved in:
Bibliographic Details
Published inJournal of general microbiology Vol. 138; no. 11; pp. 2449 - 2457
Main Authors Euverink, G.J.W, Hessels, G.I, Vrijbloed, J.W, Coggins, J.R, Dijkhuizen, L
Format Journal Article
LanguageEnglish
Published England Soc General Microbiol 01.11.1992
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Studies on hydroaromatic metabolism in the actinomycete Amycolatopsis methanolica revealed that the organism grows rapidly on quinate (but not on shikimate) as sole carbon- and energy source. Quinate is initially converted into the shikimate pathway intermediate 3-dehydroquinate by an inducible NAD+-dependent quinate/shikimate dehydrogenase. 3-Dehydroquinate dehydratase subsequently converts 3-dehydroquinate into 3-dehydroshikimate, which is used partly for the biosynthesis of aromatic amino acids, and is partly catabolized via protocatechuate and the beta-ketoadipate pathway. Enzyme studies and analysis of mutants clearly showed that the single 3-dehydroquinate dehydratase present in A. methanolica has a dual function, the first example of a 3-dehydroquinate dehydratase enzyme involved in both the catabolism of quinate and the biosynthesis of aromatic amino acids. This enzyme was purified over 1700-fold to homogeneity. Its further characterization indicated that it is a Type II 3-dehydroquinate dehydratase, a thermostable enzyme with a large oligomeric structure (native Mr 135 X 10(3)) and a subunit Mr of 12 X 10(3). Characterization of aromatic amino acid auxotrophic mutants of A. methanolica suggested that genes encoding 3-dehydroquinate synthase and 3-dehydroquinate dehydratase are genetically linked but their transcription results in the synthesis of two separate proteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1287
DOI:10.1099/00221287-138-11-2449