Secretory expression of the non-secretory-type Lentinula edodes laccase by Aspergillus oryzae

The shiitake mushroom, Lentinula edodes, has an extracelluar secretory-type laccase, Lcc1, and a fruiting-body-accumulation-type laccase, Lcc4. We previously reported the production of Lcc1 by plant cells, but had difficulty producing Lcc4. Here, we report the production of Lcc1 and Lcc4 by Aspergil...

Full description

Saved in:
Bibliographic Details
Published inMicrobiological research Vol. 164; no. 6; pp. 642 - 649
Main Authors Yano, Akira, Kikuchi, Sayaka, Nakagawa, Yuko, Sakamoto, Yuichi, Sato, Toshitsugu
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The shiitake mushroom, Lentinula edodes, has an extracelluar secretory-type laccase, Lcc1, and a fruiting-body-accumulation-type laccase, Lcc4. We previously reported the production of Lcc1 by plant cells, but had difficulty producing Lcc4. Here, we report the production of Lcc1 and Lcc4 by Aspergillus oryzae and the extracellular secretory production of Lcc4 using a modified secretion signal peptide (SP) from Lcc1. Sp-Lcc4 produced by A. oryzae had biochemical activities similar to Lcc4 produced by L. edodes. Lcc1 did not react with beta-(3,4-dihydroxyphenol) alanine (DOPA), but Lcc4 from L. edodes and A. oryzae could oxidize DOPA. K M values for the substrates 2,2′-azino-di-(3-ethylbenzthiazolinsulfonate), 2,6-dimethoxyphenol, guaiacol, pyrogallol, and catechol were similar for Lcc4 and Sp-Lcc4. In conclusion, a non-secretory-type fungal laccase is secreted into the culture media with its original enzymatic properties by exploiting modified secretory signal peptide.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0944-5013
1618-0623
DOI:10.1016/j.micres.2008.12.001