Role of initial system-bath correlation on coherence trapping

We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 5; no. 1; p. 13359
Main Authors Zhang, Ying-Jie, Han, Wei, Xia, Yun-Jie, Yu, Yan-Mei, Fan, Heng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.08.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored.
AbstractList We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored.
We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored.We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored.
ArticleNumber 13359
Author Han, Wei
Zhang, Ying-Jie
Yu, Yan-Mei
Fan, Heng
Xia, Yun-Jie
Author_xml – sequence: 1
  givenname: Ying-Jie
  surname: Zhang
  fullname: Zhang, Ying-Jie
  organization: Department of Physics, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 2
  givenname: Wei
  surname: Han
  fullname: Han, Wei
  organization: Department of Physics, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University
– sequence: 3
  givenname: Yun-Jie
  surname: Xia
  fullname: Xia, Yun-Jie
  organization: Department of Physics, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University
– sequence: 4
  givenname: Yan-Mei
  surname: Yu
  fullname: Yu, Yan-Mei
  organization: Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
– sequence: 5
  givenname: Heng
  surname: Fan
  fullname: Fan, Heng
  organization: Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Innovative Center of Quantum Matter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26303160$$D View this record in MEDLINE/PubMed
BookMark eNptkdtLBCEUxiWKLlsP_QMx0EsFU15GHR8KIrrBQhC9i2Nndo1ZnXQ26L_P2ortIoKCv_Odz_NtoVUfPCC0S_Axwaw-SRF6whhXK2iT4oqXlFG6unTfQDspPeG8OFUVUetogwqGGRF4E53ehw6K0BbOu8GZrkivaYBZ2ZhhWtgQI3RmcMEXedswhQjeQjFE0_fOT7bRWmu6BDuf5wg9XF0-XNyU47vr24vzcWk5roaSgrRE0JZhyF25aZhUjBLRUkspbQSVFRZtTRRYK42sDZeixYK1jWAVATZCZwvZft7M4NGCzwY63Uc3M_FVB-P0zxfvpnoSXnTFq5rUIgscfArE8DyHNOiZSxa6zngI86SJxJJzpYTK6P4v9CnMo8-_06RWSlJOapqpvWVH31a-BpuBkwVgY0g5olZbN3xMMht0nSZYv6env9PLFYe_Kr5E_2OPFmzKjJ9AXDL5B34DeD2nsg
CitedBy_id crossref_primary_10_1103_PhysRevA_106_042219
crossref_primary_10_1103_PhysRevLett_132_140402
crossref_primary_10_1038_srep19365
crossref_primary_10_1016_j_aop_2017_10_017
crossref_primary_10_1142_S0217984923502457
crossref_primary_10_1007_s11128_017_1584_0
crossref_primary_10_1103_PhysRevB_100_224301
crossref_primary_10_1088_1751_8121_acd231
crossref_primary_10_1088_1612_202X_abef02
crossref_primary_10_1103_PhysRevA_98_022114
crossref_primary_10_1002_andp_202100412
crossref_primary_10_1016_j_physrep_2018_07_004
crossref_primary_10_1103_RevModPhys_89_041003
crossref_primary_10_1016_j_rinp_2024_107333
crossref_primary_10_1088_1402_4896_ac74ef
crossref_primary_10_1088_1674_1056_25_8_080304
crossref_primary_10_1088_1674_1056_abe1a9
crossref_primary_10_1007_s10773_019_04305_2
crossref_primary_10_1142_S0217979224504290
crossref_primary_10_1103_PhysRevLett_116_240405
crossref_primary_10_1103_PhysRevLett_121_070401
crossref_primary_10_1038_srep29260
crossref_primary_10_1103_PhysRevA_96_032117
crossref_primary_10_1007_s11128_021_03018_y
crossref_primary_10_1088_1367_2630_ac2c2a
crossref_primary_10_1140_epjc_s10052_022_10700_7
crossref_primary_10_1088_1402_4896_ad7f11
crossref_primary_10_1007_s10773_020_04693_w
crossref_primary_10_1088_1402_4896_ada2be
crossref_primary_10_1088_1612_202X_ab1420
crossref_primary_10_1088_1674_1056_27_1_010302
crossref_primary_10_1002_qute_202100040
crossref_primary_10_1088_1612_202X_abf0ab
crossref_primary_10_1088_1612_202X_ab6aa4
crossref_primary_10_1016_j_aop_2016_08_014
crossref_primary_10_1016_j_aop_2016_12_007
crossref_primary_10_1088_1751_8121_50_4_045301
crossref_primary_10_1088_1402_4896_ad6698
crossref_primary_10_1088_1572_9494_acdce8
crossref_primary_10_1103_PhysRevA_104_042205
crossref_primary_10_1140_epjd_e2018_90416_0
crossref_primary_10_1088_1612_202X_ab00fa
crossref_primary_10_1088_1674_1056_26_11_110303
crossref_primary_10_1016_j_aop_2024_169825
crossref_primary_10_1103_PhysRevA_101_022114
crossref_primary_10_1103_PhysRevA_104_012211
crossref_primary_10_1038_s41598_024_57150_7
crossref_primary_10_1103_PhysRevA_108_012218
crossref_primary_10_1088_2058_9565_aaf43d
crossref_primary_10_1103_PhysRevA_95_052106
crossref_primary_10_1103_PhysRevResearch_6_013317
crossref_primary_10_1088_1751_8121_ad707e
crossref_primary_10_1103_PhysRevA_101_052334
crossref_primary_10_1140_epjc_s10052_023_11306_3
crossref_primary_10_1140_epjd_e2016_70460_6
Cites_doi 10.1103/PhysRevA.79.012104
10.1103/PhysRevLett.110.050402
10.1038/nature05461
10.1039/c2cp40815e
10.1103/PhysRevLett.108.160402
10.1038/nature09801
10.1209/0295-5075/92/60010
10.1103/PhysRevLett.109.170402
10.1038/srep04890
10.1103/PhysRevA.83.032103
10.1103/PhysRevA.82.022108
10.1073/pnas.1211157110
10.1103/PhysRevA.77.062303
10.1093/acprof:oso/9780199213900.001.0001
10.1103/PhysRevA.89.024101
10.1103/PhysRevA.82.022107
10.1063/1.4900512
10.1103/PhysRevA.88.052107
10.1021/jz201189p
10.1103/PhysRevA.67.052109
10.1103/PhysRevLett.102.100402
10.1103/PhysRevA.86.016101
10.1103/PhysRevLett.113.140401
10.1103/PhysRevLett.113.170401
10.1103/RevModPhys.86.153
10.1088/1367-2630/15/1/013017
10.1103/PhysRevLett.111.260501
10.1063/1.3563617
10.1103/PhysRevA.84.032112
10.1103/PhysRevLett.113.150402
10.1103/PhysRevLett.104.250401
10.1063/1.1649803
10.1103/RevModPhys.67.759
10.1088/1367-2630/17/3/033038
10.1103/PhysRevLett.70.3365
10.1038/nphys2085
10.1103/PhysRevLett.105.237001
10.1103/PhysRevLett.94.113003
10.1039/c3fd20144a
10.1103/PhysRevA.82.012341
10.1103/RevModPhys.76.1037
10.1038/nphys2515
10.1103/PhysRevLett.105.050403
10.1063/1.4825358
10.1103/PhysRevLett.110.050403
10.1103/PhysRevLett.65.1697
10.1103/PhysRevLett.111.010402
10.1103/PhysRevA.87.022106
10.1038/nphys2275
10.1103/PhysRevA.90.032110
10.1103/PhysRevA.89.012307
10.1126/science.1142188
10.1103/PhysRevLett.103.210401
10.1103/PhysRevA.83.064102
10.1103/PhysRevE.53.4107
10.1103/PhysRevLett.103.160502
10.1088/1751-8113/46/33/335302
ContentType Journal Article
Copyright The Author(s) 2015
Copyright Nature Publishing Group Aug 2015
Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited
Copyright_xml – notice: The Author(s) 2015
– notice: Copyright Nature Publishing Group Aug 2015
– notice: Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/srep13359
DatabaseName Springer Nature Link
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2045-2322
ExternalDocumentID PMC4548186
26303160
10_1038_srep13359
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c504t-2e7c162f30e3165ab3793216f2c222b627406f819ecc7a78a576f063fb6341e3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:24:14 EDT 2025
Mon Jul 21 09:37:48 EDT 2025
Sat Aug 23 13:52:32 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
Tue Jul 01 03:15:01 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Fri Feb 21 02:39:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-2e7c162f30e3165ab3793216f2c222b627406f819ecc7a78a576f063fb6341e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep13359
PMID 26303160
PQID 1899725182
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4548186
proquest_miscellaneous_1707559969
proquest_journals_1899725182
pubmed_primary_26303160
crossref_citationtrail_10_1038_srep13359
crossref_primary_10_1038_srep13359
springer_journals_10_1038_srep13359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-25
PublicationDateYYYYMMDD 2015-08-25
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-25
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).
ÅbergJCatalytic coherencePhys. Rev. Lett.20141131504022014PhRvL.113o0402A2537569310.1103/PhysRevLett.113.1504021:CAS:528:DC%2BC2cXhvFKqsLjK
VandershypenLMKChuangILNMR techniques for quantum control and computationRev. Mod. Phys.20047610372004RvMP...76.1037V10.1103/RevModPhys.76.1037
PfeiferPFröhlichJGeneralized time-energy uncertainty relations and bounds on lifetimes of resonans. Rev. Mod. Phys.1995677591995RvMP...67..759P1:CAS:528:DyaK28Xhslagt7Y%3D10.1103/RevModPhys.67.759
PachónLABrumerPIncoherent excitation of thermally equilibrated open quantum systemsPhys. Rev. A2013870221062013PhRvA..87b2106P10.1103/PhysRevA.87.0221061:CAS:528:DC%2BC3sXksVGrt7c%3D
AnandanJAharonovYGeometry of quantum evolutionPhys. Rev. Lett.199065169717001990PhRvL..65.1697A10713481:STN:280:DC%2BC2sfoslOhtg%3D%3D100423400960.8152410.1103/PhysRevLett.65.1697
Pachón, L. A., Triana, J. F., Zueco, D. & Brumer, P. Uncertainty principle consequences at thermal equilibrium. arXiv: 1401.1418 (2014).
JonesPJKokPGeometric derivation of the quantum speed limitPhys. Rev. A2010820221072010PhRvA..82b2107J277201110.1103/PhysRevA.82.0221071:CAS:528:DC%2BC3cXhtFSrsrvP
CederbaumLSGindenspergerEBurghardtIShort-time dynamics through conical intersections in macrosystemsPhys. Rev. Lett.2005941130032005PhRvL..94k3003C1590385210.1103/PhysRevLett.94.1130031:CAS:528:DC%2BD2MXisl2ksrw%3D
SmirneAExperimental investigation of initial system-environment correlations via trace-distance evolutionPhys. Rev. A2011840321122011PhRvA..84c2112S10.1103/PhysRevA.84.0321121:CAS:528:DC%2BC3MXht1Ghs7rI
DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131110104022013PhRvL.111a0402D2386298510.1103/PhysRevLett.111.0104021:CAS:528:DC%2BC3sXhtFOqsrnJ
HegerfeldtGCHigh-speed driving of a two-level systemPhys. Rev. A2014900321102014PhRvA..90c2110H10.1103/PhysRevA.90.0321101:CAS:528:DC%2BC2cXhvVClsrbJ
BaumgratzTCramerMPlenioMBQuantifying coherencePhys. Rev. Lett.20141131404012014PhRvL.113n0401B1:STN:280:DC%2BC2M3hs1Sltw%3D%3D2532562010.1103/PhysRevLett.113.140401
Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 2008).
PachónLABrumerPComputational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexesPhys. Chem. Chem. Phys.201214100942273523710.1039/c2cp40815e1:CAS:528:DC%2BC38XpvVarurY%3D
BarreiroJTAn open-system quantum simulator with trapped ionsNature20114704862011Natur.470..486B1:CAS:528:DC%2BC3MXisVagur4%3D2135048110.1038/nature09801
DeffnerSLutzEEnergy-time uncertainty relation for driven quantum systemsJ. Phys. A: Math. Theor.20134633530230853871273.8100910.1088/1751-8113/46/33/335302
LevitinLBToffoliTFundamental limit on the rate of quantum dynamics: the unified bound is tightPhys. Rev. Lett.20091031605022009PhRvL.103p0502L1990567910.1103/PhysRevLett.103.1605021:CAS:528:DC%2BD1MXht1OrtbfK
TonyJGMemory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chainPhys. Rev. A2011830321032011PhRvA..83c2102T10.1103/PhysRevA.83.0321031:CAS:528:DC%2BC3MXkt1Ghs7Y%3D
DijkstraAGTanimuraYNon-Markovian entanglement dynamics in the presence of system-bath coherencePhys. Rev. Lett.20101042504012010PhRvL.104y0401D2086735010.1103/PhysRevLett.104.2504011:CAS:528:DC%2BC3cXosV2ksLg%3D
MandelstamLTammIThe uncertainty relation between energy and time in nonrelativistic quantum mechanicsJ. Phys. (USSR)19459249254153340060.45003
DajkaJŁuczkaJDistance growth of quantum states due to initial system-environment correlationsPhys. Rev. A2010820123412010PhRvA..82a2341D10.1103/PhysRevA.82.0123411:CAS:528:DC%2BC3cXpsF2hu70%3D
LeeHChengYCFlemingGRCoherence dynamics in photosynthesis: Protein protection of excitonic coherenceScience200731614622007Sci...316.1462L1:CAS:528:DC%2BD2sXmtFSjsbs%3D1755658010.1126/science.1142188
LaineEMPiiloJBreuerHPWitness for initial system-environment correlations in open-system dynamicsEurophys. Lett.201092600102010EL.....9260010L10.1209/0295-5075/92/600101:CAS:528:DC%2BC3MXktVGrtLw%3D
BendicksonJMDowlingJPScaloraMAnalytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structuresPhys. Rev. E19965341071996PhRvE..53.4107B1:CAS:528:DyaK28XisVSnt7c%3D10.1103/PhysRevE.53.4107
ZhangYJHanWXiaYJCaoJPFanHQuantum speed limit for arbitrary initial statesSci. Rep.2014448901:CAS:528:DC%2BC2MXktlOgtLY%3D24809395401393710.1038/srep04890
XieQTCuiSCaoJPLuigiAFanHAnisotropic Rabi modelPhys. Rev. X20144021046
PachónLABrumerPDirect experimental determination of spectral densities of molecular complexesJ. Chem. Phys.20141411741022014JChPh.141q4102P2538149710.1063/1.49005121:CAS:528:DC%2BC2cXhvVGnsr7P
CiracJIZollerPGoals and opportunities in quantum simulationNat. Phys.201282641:CAS:528:DC%2BC38XkvVGqs74%3D10.1038/nphys2275
GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861532014RvMP...86..153G10.1103/RevModPhys.86.153
PachónLABrumerPMechanisms in environmentally assisted one-photon phase controlJ. Chem. Phys.20131391641232013JChPh.139p4123P2418202010.1063/1.48253581:CAS:528:DC%2BC3sXhslWmurrO
LiCFTangJSLiYLGuoGCExperimentally witnessing the initial correlation between an open quantum system and its environmentPhys. Rev. A2011830641022011PhRvA..83f4102L10.1103/PhysRevA.83.0641021:CAS:528:DC%2BC3MXosVWjsLs%3D
ChinAWThe role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexesNat. Phys.201391131:CAS:528:DC%2BC3sXjslGmtQ%3D%3D10.1038/nphys2515
TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131100504022013PhRvL.110e0402T1:STN:280:DC%2BC3szoslynsA%3D%3D2341400710.1103/PhysRevLett.110.050402
SchusterDIResolving photon number states in a superconducting circuitNature20074455152007Natur.445..515S1:CAS:528:DC%2BD2sXhtFWht7c%3D1726846410.1038/nature05461
ZwierzMComment on geometric derivation of the quantum speed limitPhys. Rev. A2012860161012012PhRvA..86a6101Z10.1103/PhysRevA.86.0161011:CAS:528:DC%2BC38Xht1agurfI
BreuerHPLaineEMPiiloJMeasure for the degree of non-Markovian behavior of quantum processes in open systemsPhys. Rev. Lett.20091032104012009PhRvL.103u0401B25700182036601910.1103/PhysRevLett.103.2104011:CAS:528:DC%2BD1MXhsVCrurfF
WongCWStrain-tunable silicon photonic band gap microcavities in optical waveguidesAppl. Phys. Lett.20048412422004ApPhL..84.1242W1:CAS:528:DC%2BD2cXhsVylt7s%3D10.1063/1.1649803
Forn-DiazPObservation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regimePhys. Rev. Lett.20101052370012010PhRvL.105w7001F1:STN:280:DC%2BC3M7htlOlsA%3D%3D2123149610.1103/PhysRevLett.105.237001
ZhangWMGeneral non-Markovian dynamics of open quantum systemsPhys. Rev. Lett.20121091704022012PhRvL.109q0402Z2321516610.1103/PhysRevLett.109.1704021:CAS:528:DC%2BC38Xhs12rsrzO
RebentrostPAspuru-GuzikACommunication: Exciton-phonon information flow in the energy transfer process of photosynthetic complexesJ. Chem. Phys.20111341011032011JChPh.134j1103R2140514910.1063/1.35636171:CAS:528:DC%2BC3MXivFyqtL4%3D
XuZYLuoSLYangWLLiuCZhuSQQuantum speedup in memory environmentPhys. Rev. A2014890123072014PhRvA..89a2307X10.1103/PhysRevA.89.0123071:CAS:528:DC%2BC2cXjsVSgsb8%3D
del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.20131100504032013PhRvL.110e0403D1:STN:280:DC%2BC3szoslynsQ%3D%3D2341400810.1103/PhysRevLett.110.050403
DajkaJŁuczkaJOrigination and survival of qudit-qudit entanglement in open systemsPhys. Rev. A2008770623032008PhRvA..77f2303D249141210.1103/PhysRevA.77.0623031:CAS:528:DC%2BD1cXot1Klt7s%3D
HegerfeldtGCDriving at the quantum speed limit: optimal control of a two-level systemPhys. Rev. Lett.20131112605012013PhRvL.111z0501H2448378610.1103/PhysRevLett.111.2605011:CAS:528:DC%2BC2cXpvVWhtA%3D%3D
GiovannettiVLloydSMacconeLQuantum limits to dynamical evolutionPhys. Rev. A2003670521092003PhRvA..67e2109G10.1103/PhysRevA.67.0521091:CAS:528:DC%2BD3sXksVWjsbw%3D
AddisCBrebnerGHaikkaPManiscalcoSCoherence trapping and information backflow in dephasing qubitsPhys. Rev. A2014890241012014PhRvA..89b4101A10.1103/PhysRevA.89.0241011:CAS:528:DC%2BC2cXltFeksrY%3D
PachónLAYuLBrumerPCoherent one-photon phase control in closed and open quantum systems: A general master equation approachFaraday Discuss.20131634852013FaDi..163..485P2402021810.1039/c3fd20144a1:CAS:528:DC%2BC3sXhtFClsL%2FM
Nielsen, M. & Chuang, I. Quantum Computation and Quantum Communication (Cambridge University Press, Cambridge, 2000).
DajkaJMierzejewskiMŁuczkaJFidelity of asymmetric dephasing channelsPhys. Rev. A2009 790121042009PhRvA..79a2104D10.1103/PhysRevA.79.0121041:CAS:528:DC%2BD1MXhtlGrurk%3D
EstradaAFPachónLAQuantum limit for driven linear non-Markovian open-quantum-systemsNew J. Phys.2015170330382015NJPh...17c3038E333533710.1088/1367-2630/17/3/0330381452.81144
PachónLABrumerPPhysical basis for long-lived electronic coherence in photosynthetic light-harvesting systemsJ. Phys. Chem. Lett.20112272810.1021/jz201189p1:CAS:528:DC%2BC3MXhtlWjtrfI
RivasAHuelgaSFPlenioMBEntanglement and non-Markovianity of quantum evolutionsPhys. Rev. Lett.20101050504032010PhRvL.105e0403R26730362086789810.1103/PhysRevLett.105.0504031:CAS:528:DC%2BC3cXpsFKgtLw%3D
TiwariVPetersWKJonasDMElectronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic frameworkPNAS201311012032013PNAS..110.1203T1:CAS:528:DC%2BC3sXhvFert7s%3D2326711410.1073/pnas.1211157110
ChaudhryAZGongJBRole of initial system-environment correlations: A master equation approachPhys. Rev. A2013880521072013PhRvA..88e2107C10.1103/PhysRevA.88.0521071:CAS:528:DC%2BC3sXhvFynurvE
LiuBHExperimental control of the transition from Markovian to non-Markovian dynamics of open quantum systemsNature Phys.201179312011NatPh...7..931L1:CAS:528:DC%2BC3MXhtF2isLnK10.1038/nphys2085
ShabaniALidarDAVanishing quantum discord is
AF Estrada (BFsrep13359_CR55) 2015; 17
JG Tony (BFsrep13359_CR7) 2011; 83
QT Xie (BFsrep13359_CR60) 2014; 4
LA Pachón (BFsrep13359_CR26) 2013; 163
ZY Xu (BFsrep13359_CR45) 2014; 89
JI Cirac (BFsrep13359_CR53) 2012; 8
M Zwierz (BFsrep13359_CR37) 2012; 86
DI Schuster (BFsrep13359_CR62) 2007; 445
HP Breuer (BFsrep13359_CR15) 2009; 103
AZ Chaudhry (BFsrep13359_CR24) 2013; 88
P Pfeifer (BFsrep13359_CR40) 1995; 67
S Deffner (BFsrep13359_CR43) 2013; 111
GC Hegerfeldt (BFsrep13359_CR31) 2014; 90
LB Levitin (BFsrep13359_CR34) 2009; 103
BFsrep13359_CR11
AD Cimmarusti (BFsrep13359_CR29) 2013; 15
AG Dijkstra (BFsrep13359_CR22) 2010; 104
S Deffner (BFsrep13359_CR38) 2013; 46
LMK Vandershypen (BFsrep13359_CR2) 2004; 76
V Tiwari (BFsrep13359_CR57) 2013; 110
J Dajka (BFsrep13359_CR14) 2010; 82
A Smirne (BFsrep13359_CR13) 2011; 84
BH Liu (BFsrep13359_CR17) 2011; 7
IM Georgescu (BFsrep13359_CR54) 2014; 86
AW Chin (BFsrep13359_CR8) 2013; 9
J Dajka (BFsrep13359_CR46) 2008; 77
P Forn-Diaz (BFsrep13359_CR59) 2010; 105
CF Li (BFsrep13359_CR19) 2011; 83
C Addis (BFsrep13359_CR12) 2014; 89
BFsrep13359_CR28
L Mandelstam (BFsrep13359_CR32) 1945; 9
A del Campo (BFsrep13359_CR42) 2013; 110
YJ Zhang (BFsrep13359_CR44) 2014; 4
A Rivas (BFsrep13359_CR16) 2010; 105
LA Pachón (BFsrep13359_CR56) 2011; 2
JT Barreiro (BFsrep13359_CR58) 2011; 470
JM Bendickson (BFsrep13359_CR49) 1996; 53
CW Wong (BFsrep13359_CR61) 2004; 84
BFsrep13359_CR3
H Lee (BFsrep13359_CR4) 2007; 316
BFsrep13359_CR1
P Rebentrost (BFsrep13359_CR6) 2011; 134
LA Pachón (BFsrep13359_CR25) 2013; 87
J Åberg (BFsrep13359_CR51) 2014; 113
EM Laine (BFsrep13359_CR18) 2010; 92
WM Zhang (BFsrep13359_CR21) 2012; 109
P Pfeifer (BFsrep13359_CR39) 1993; 70
GC Hegerfeldt (BFsrep13359_CR30) 2013; 111
LA Pachón (BFsrep13359_CR9) 2012; 14
T Baumgratz (BFsrep13359_CR50) 2014; 113
MM Taddei (BFsrep13359_CR41) 2013; 110
SF Huelga (BFsrep13359_CR10) 2012; 108
PJ Jones (BFsrep13359_CR36) 2010; 82
D Girolami (BFsrep13359_CR52) 2014; 113
YJ Zhang (BFsrep13359_CR20) 2010; 82
J Anandan (BFsrep13359_CR33) 1990; 65
V Giovannetti (BFsrep13359_CR35) 2003; 67
J Dajka (BFsrep13359_CR47) 2009; 79
LA Pachón (BFsrep13359_CR27) 2013; 139
LA Pachón (BFsrep13359_CR48) 2014; 141
LS Cederbaum (BFsrep13359_CR5) 2005; 94
A Shabani (BFsrep13359_CR23) 2009; 102
22680702 - Phys Rev Lett. 2012 Apr 20;108(16):160402
23862985 - Phys Rev Lett. 2013 Jul 5;111(1):010402
23215166 - Phys Rev Lett. 2012 Oct 26;109(17):170402
20867350 - Phys Rev Lett. 2010 Jun 25;104(25):250401
20366019 - Phys Rev Lett. 2009 Nov 20;103(21):210401
20867898 - Phys Rev Lett. 2010 Jul 30;105(5):050403
22735237 - Phys Chem Chem Phys. 2012 Aug 7;14(29):10094-108
25379903 - Phys Rev Lett. 2014 Oct 24;113(17):170401
24182020 - J Chem Phys. 2013 Oct 28;139(16):164123
21405149 - J Chem Phys. 2011 Mar 14;134(10):101103
19905679 - Phys Rev Lett. 2009 Oct 16;103(16):160502
21350481 - Nature. 2011 Feb 24;470(7335):486-91
19392093 - Phys Rev Lett. 2009 Mar 13;102(10):100402
23267114 - Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1203-8
10042340 - Phys Rev Lett. 1990 Oct 1;65(14):1697-1700
25375693 - Phys Rev Lett. 2014 Oct 10;113(15):150402
23414008 - Phys Rev Lett. 2013 Feb 1;110(5):050403
10053850 - Phys Rev Lett. 1993 May 31;70(22):3365-3368
25325620 - Phys Rev Lett. 2014 Oct 3;113(14):140401
23414007 - Phys Rev Lett. 2013 Feb 1;110(5):050402
17556580 - Science. 2007 Jun 8;316(5830):1462-5
24020218 - Faraday Discuss. 2013;163:485-95; discussion 513-43
15903852 - Phys Rev Lett. 2005 Mar 25;94(11):113003
24809395 - Sci Rep. 2014 May 08;4:4890
21231496 - Phys Rev Lett. 2010 Dec 3;105(23):237001
9964724 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):4107-4121
24483786 - Phys Rev Lett. 2013 Dec 27;111(26):260501
25381497 - J Chem Phys. 2014 Nov 7;141(17):174102
17268464 - Nature. 2007 Feb 1;445(7127):515-8
References_xml – reference: Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).
– reference: JonesPJKokPGeometric derivation of the quantum speed limitPhys. Rev. A2010820221072010PhRvA..82b2107J277201110.1103/PhysRevA.82.0221071:CAS:528:DC%2BC3cXhtFSrsrvP
– reference: del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.20131100504032013PhRvL.110e0403D1:STN:280:DC%2BC3szoslynsQ%3D%3D2341400810.1103/PhysRevLett.110.050403
– reference: Nielsen, M. & Chuang, I. Quantum Computation and Quantum Communication (Cambridge University Press, Cambridge, 2000).
– reference: BendicksonJMDowlingJPScaloraMAnalytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structuresPhys. Rev. E19965341071996PhRvE..53.4107B1:CAS:528:DyaK28XisVSnt7c%3D10.1103/PhysRevE.53.4107
– reference: BreuerHPLaineEMPiiloJMeasure for the degree of non-Markovian behavior of quantum processes in open systemsPhys. Rev. Lett.20091032104012009PhRvL.103u0401B25700182036601910.1103/PhysRevLett.103.2104011:CAS:528:DC%2BD1MXhsVCrurfF
– reference: WongCWStrain-tunable silicon photonic band gap microcavities in optical waveguidesAppl. Phys. Lett.20048412422004ApPhL..84.1242W1:CAS:528:DC%2BD2cXhsVylt7s%3D10.1063/1.1649803
– reference: PachónLAYuLBrumerPCoherent one-photon phase control in closed and open quantum systems: A general master equation approachFaraday Discuss.20131634852013FaDi..163..485P2402021810.1039/c3fd20144a1:CAS:528:DC%2BC3sXhtFClsL%2FM
– reference: CiracJIZollerPGoals and opportunities in quantum simulationNat. Phys.201282641:CAS:528:DC%2BC38XkvVGqs74%3D10.1038/nphys2275
– reference: LiCFTangJSLiYLGuoGCExperimentally witnessing the initial correlation between an open quantum system and its environmentPhys. Rev. A2011830641022011PhRvA..83f4102L10.1103/PhysRevA.83.0641021:CAS:528:DC%2BC3MXosVWjsLs%3D
– reference: RebentrostPAspuru-GuzikACommunication: Exciton-phonon information flow in the energy transfer process of photosynthetic complexesJ. Chem. Phys.20111341011032011JChPh.134j1103R2140514910.1063/1.35636171:CAS:528:DC%2BC3MXivFyqtL4%3D
– reference: HegerfeldtGCDriving at the quantum speed limit: optimal control of a two-level systemPhys. Rev. Lett.20131112605012013PhRvL.111z0501H2448378610.1103/PhysRevLett.111.2605011:CAS:528:DC%2BC2cXpvVWhtA%3D%3D
– reference: ShabaniALidarDAVanishing quantum discord is necessary and sufficient for completely positive mapsPhys. Rev. Lett.20091021004022009PhRvL.102j0402S1939209310.1103/PhysRevLett.102.1004021:CAS:528:DC%2BD1MXjt1Ciu7s%3D
– reference: ChinAWThe role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexesNat. Phys.201391131:CAS:528:DC%2BC3sXjslGmtQ%3D%3D10.1038/nphys2515
– reference: ZwierzMComment on geometric derivation of the quantum speed limitPhys. Rev. A2012860161012012PhRvA..86a6101Z10.1103/PhysRevA.86.0161011:CAS:528:DC%2BC38Xht1agurfI
– reference: VandershypenLMKChuangILNMR techniques for quantum control and computationRev. Mod. Phys.20047610372004RvMP...76.1037V10.1103/RevModPhys.76.1037
– reference: TiwariVPetersWKJonasDMElectronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic frameworkPNAS201311012032013PNAS..110.1203T1:CAS:528:DC%2BC3sXhvFert7s%3D2326711410.1073/pnas.1211157110
– reference: DajkaJŁuczkaJDistance growth of quantum states due to initial system-environment correlationsPhys. Rev. A2010820123412010PhRvA..82a2341D10.1103/PhysRevA.82.0123411:CAS:528:DC%2BC3cXpsF2hu70%3D
– reference: CimmarustiADControl of conditional quantum beats in cavity QED: amplitude decoherence and phase shiftsNew J. Phys.2013150130172013NJPh...15a3017C10.1088/1367-2630/15/1/0130171:CAS:528:DC%2BC2cXntVKgtLc%3D
– reference: XuZYLuoSLYangWLLiuCZhuSQQuantum speedup in memory environmentPhys. Rev. A2014890123072014PhRvA..89a2307X10.1103/PhysRevA.89.0123071:CAS:528:DC%2BC2cXjsVSgsb8%3D
– reference: ÅbergJCatalytic coherencePhys. Rev. Lett.20141131504022014PhRvL.113o0402A2537569310.1103/PhysRevLett.113.1504021:CAS:528:DC%2BC2cXhvFKqsLjK
– reference: SmirneAExperimental investigation of initial system-environment correlations via trace-distance evolutionPhys. Rev. A2011840321122011PhRvA..84c2112S10.1103/PhysRevA.84.0321121:CAS:528:DC%2BC3MXht1Ghs7rI
– reference: XieQTCuiSCaoJPLuigiAFanHAnisotropic Rabi modelPhys. Rev. X20144021046
– reference: HuelgaSFRivasAPlenioMBNon-Markovianity-sssisted steady state entanglementPhys. Rev. Lett.20121081604022012PhRvL.108p0402H2268070210.1103/PhysRevLett.108.1604021:CAS:528:DC%2BC38XpsVSjsrg%3D
– reference: PfeiferPHow fast can a quantum state change with time?Phys. Rev. Lett.19937033651993PhRvL..70.3365P1:STN:280:DC%2BC2sfptlamtA%3D%3D1005385010.1103/PhysRevLett.70.3365
– reference: PachónLABrumerPComputational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexesPhys. Chem. Chem. Phys.201214100942273523710.1039/c2cp40815e1:CAS:528:DC%2BC38XpvVarurY%3D
– reference: RivasAHuelgaSFPlenioMBEntanglement and non-Markovianity of quantum evolutionsPhys. Rev. Lett.20101050504032010PhRvL.105e0403R26730362086789810.1103/PhysRevLett.105.0504031:CAS:528:DC%2BC3cXpsFKgtLw%3D
– reference: PachónLABrumerPIncoherent excitation of thermally equilibrated open quantum systemsPhys. Rev. A2013870221062013PhRvA..87b2106P10.1103/PhysRevA.87.0221061:CAS:528:DC%2BC3sXksVGrt7c%3D
– reference: PachónLABrumerPDirect experimental determination of spectral densities of molecular complexesJ. Chem. Phys.20141411741022014JChPh.141q4102P2538149710.1063/1.49005121:CAS:528:DC%2BC2cXhvVGnsr7P
– reference: CederbaumLSGindenspergerEBurghardtIShort-time dynamics through conical intersections in macrosystemsPhys. Rev. Lett.2005941130032005PhRvL..94k3003C1590385210.1103/PhysRevLett.94.1130031:CAS:528:DC%2BD2MXisl2ksrw%3D
– reference: GiovannettiVLloydSMacconeLQuantum limits to dynamical evolutionPhys. Rev. A2003670521092003PhRvA..67e2109G10.1103/PhysRevA.67.0521091:CAS:528:DC%2BD3sXksVWjsbw%3D
– reference: DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131110104022013PhRvL.111a0402D2386298510.1103/PhysRevLett.111.0104021:CAS:528:DC%2BC3sXhtFOqsrnJ
– reference: PachónLABrumerPPhysical basis for long-lived electronic coherence in photosynthetic light-harvesting systemsJ. Phys. Chem. Lett.20112272810.1021/jz201189p1:CAS:528:DC%2BC3MXhtlWjtrfI
– reference: Forn-DiazPObservation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regimePhys. Rev. Lett.20101052370012010PhRvL.105w7001F1:STN:280:DC%2BC3M7htlOlsA%3D%3D2123149610.1103/PhysRevLett.105.237001
– reference: SchusterDIResolving photon number states in a superconducting circuitNature20074455152007Natur.445..515S1:CAS:528:DC%2BD2sXhtFWht7c%3D1726846410.1038/nature05461
– reference: DeffnerSLutzEEnergy-time uncertainty relation for driven quantum systemsJ. Phys. A: Math. Theor.20134633530230853871273.8100910.1088/1751-8113/46/33/335302
– reference: Pachón, L. A., Triana, J. F., Zueco, D. & Brumer, P. Uncertainty principle consequences at thermal equilibrium. arXiv: 1401.1418 (2014).
– reference: HegerfeldtGCHigh-speed driving of a two-level systemPhys. Rev. A2014900321102014PhRvA..90c2110H10.1103/PhysRevA.90.0321101:CAS:528:DC%2BC2cXhvVClsrbJ
– reference: LeeHChengYCFlemingGRCoherence dynamics in photosynthesis: Protein protection of excitonic coherenceScience200731614622007Sci...316.1462L1:CAS:528:DC%2BD2sXmtFSjsbs%3D1755658010.1126/science.1142188
– reference: LevitinLBToffoliTFundamental limit on the rate of quantum dynamics: the unified bound is tightPhys. Rev. Lett.20091031605022009PhRvL.103p0502L1990567910.1103/PhysRevLett.103.1605021:CAS:528:DC%2BD1MXht1OrtbfK
– reference: Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 2008).
– reference: AddisCBrebnerGHaikkaPManiscalcoSCoherence trapping and information backflow in dephasing qubitsPhys. Rev. A2014890241012014PhRvA..89b4101A10.1103/PhysRevA.89.0241011:CAS:528:DC%2BC2cXltFeksrY%3D
– reference: GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861532014RvMP...86..153G10.1103/RevModPhys.86.153
– reference: ZhangYJZouXBXiaYJGuoGCDifferent entanglement dynamical behaviors due to initial system-environment correlationsPhys. Rev. A2010820221082010PhRvA..82b2108Z10.1103/PhysRevA.82.0221081:CAS:528:DC%2BC3cXhtFSrsrvI
– reference: LiuBHExperimental control of the transition from Markovian to non-Markovian dynamics of open quantum systemsNature Phys.201179312011NatPh...7..931L1:CAS:528:DC%2BC3MXhtF2isLnK10.1038/nphys2085
– reference: TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131100504022013PhRvL.110e0402T1:STN:280:DC%2BC3szoslynsA%3D%3D2341400710.1103/PhysRevLett.110.050402
– reference: MandelstamLTammIThe uncertainty relation between energy and time in nonrelativistic quantum mechanicsJ. Phys. (USSR)19459249254153340060.45003
– reference: LaineEMPiiloJBreuerHPWitness for initial system-environment correlations in open-system dynamicsEurophys. Lett.201092600102010EL.....9260010L10.1209/0295-5075/92/600101:CAS:528:DC%2BC3MXktVGrtLw%3D
– reference: BarreiroJTAn open-system quantum simulator with trapped ionsNature20114704862011Natur.470..486B1:CAS:528:DC%2BC3MXisVagur4%3D2135048110.1038/nature09801
– reference: ZhangYJHanWXiaYJCaoJPFanHQuantum speed limit for arbitrary initial statesSci. Rep.2014448901:CAS:528:DC%2BC2MXktlOgtLY%3D24809395401393710.1038/srep04890
– reference: GirolamiDObservable measure of quantum coherence in finite dimensional systemsPhys. Rev. Lett.20141131704012014PhRvL.113q0401G2537990310.1103/PhysRevLett.113.1704011:CAS:528:DC%2BC2cXitVSmtL7M
– reference: DajkaJMierzejewskiMŁuczkaJFidelity of asymmetric dephasing channelsPhys. Rev. A2009 790121042009PhRvA..79a2104D10.1103/PhysRevA.79.0121041:CAS:528:DC%2BD1MXhtlGrurk%3D
– reference: PachónLABrumerPMechanisms in environmentally assisted one-photon phase controlJ. Chem. Phys.20131391641232013JChPh.139p4123P2418202010.1063/1.48253581:CAS:528:DC%2BC3sXhslWmurrO
– reference: BaumgratzTCramerMPlenioMBQuantifying coherencePhys. Rev. Lett.20141131404012014PhRvL.113n0401B1:STN:280:DC%2BC2M3hs1Sltw%3D%3D2532562010.1103/PhysRevLett.113.140401
– reference: ChaudhryAZGongJBRole of initial system-environment correlations: A master equation approachPhys. Rev. A2013880521072013PhRvA..88e2107C10.1103/PhysRevA.88.0521071:CAS:528:DC%2BC3sXhvFynurvE
– reference: AnandanJAharonovYGeometry of quantum evolutionPhys. Rev. Lett.199065169717001990PhRvL..65.1697A10713481:STN:280:DC%2BC2sfoslOhtg%3D%3D100423400960.8152410.1103/PhysRevLett.65.1697
– reference: DajkaJŁuczkaJOrigination and survival of qudit-qudit entanglement in open systemsPhys. Rev. A2008770623032008PhRvA..77f2303D249141210.1103/PhysRevA.77.0623031:CAS:528:DC%2BD1cXot1Klt7s%3D
– reference: TonyJGMemory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chainPhys. Rev. A2011830321032011PhRvA..83c2102T10.1103/PhysRevA.83.0321031:CAS:528:DC%2BC3MXkt1Ghs7Y%3D
– reference: DijkstraAGTanimuraYNon-Markovian entanglement dynamics in the presence of system-bath coherencePhys. Rev. Lett.20101042504012010PhRvL.104y0401D2086735010.1103/PhysRevLett.104.2504011:CAS:528:DC%2BC3cXosV2ksLg%3D
– reference: PfeiferPFröhlichJGeneralized time-energy uncertainty relations and bounds on lifetimes of resonans. Rev. Mod. Phys.1995677591995RvMP...67..759P1:CAS:528:DyaK28Xhslagt7Y%3D10.1103/RevModPhys.67.759
– reference: ZhangWMGeneral non-Markovian dynamics of open quantum systemsPhys. Rev. Lett.20121091704022012PhRvL.109q0402Z2321516610.1103/PhysRevLett.109.1704021:CAS:528:DC%2BC38Xhs12rsrzO
– reference: EstradaAFPachónLAQuantum limit for driven linear non-Markovian open-quantum-systemsNew J. Phys.2015170330382015NJPh...17c3038E333533710.1088/1367-2630/17/3/0330381452.81144
– volume: 4
  start-page: 021046
  year: 2014
  ident: BFsrep13359_CR60
  publication-title: Phys. Rev. X
– volume: 79
  start-page: 012104
  year: 2009
  ident: BFsrep13359_CR47
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.012104
– volume: 110
  start-page: 050402
  year: 2013
  ident: BFsrep13359_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.050402
– volume: 445
  start-page: 515
  year: 2007
  ident: BFsrep13359_CR62
  publication-title: Nature
  doi: 10.1038/nature05461
– ident: BFsrep13359_CR1
– volume: 14
  start-page: 10094
  year: 2012
  ident: BFsrep13359_CR9
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp40815e
– volume: 108
  start-page: 160402
  year: 2012
  ident: BFsrep13359_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.160402
– volume: 470
  start-page: 486
  year: 2011
  ident: BFsrep13359_CR58
  publication-title: Nature
  doi: 10.1038/nature09801
– volume: 92
  start-page: 60010
  year: 2010
  ident: BFsrep13359_CR18
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/92/60010
– volume: 109
  start-page: 170402
  year: 2012
  ident: BFsrep13359_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.170402
– volume: 4
  start-page: 4890
  year: 2014
  ident: BFsrep13359_CR44
  publication-title: Sci. Rep.
  doi: 10.1038/srep04890
– volume: 83
  start-page: 032103
  year: 2011
  ident: BFsrep13359_CR7
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.032103
– volume: 82
  start-page: 022108
  year: 2010
  ident: BFsrep13359_CR20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.022108
– volume: 110
  start-page: 1203
  year: 2013
  ident: BFsrep13359_CR57
  publication-title: PNAS
  doi: 10.1073/pnas.1211157110
– volume: 77
  start-page: 062303
  year: 2008
  ident: BFsrep13359_CR46
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.062303
– ident: BFsrep13359_CR3
  doi: 10.1093/acprof:oso/9780199213900.001.0001
– volume: 89
  start-page: 024101
  year: 2014
  ident: BFsrep13359_CR12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.024101
– volume: 82
  start-page: 022107
  year: 2010
  ident: BFsrep13359_CR36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.022107
– volume: 141
  start-page: 174102
  year: 2014
  ident: BFsrep13359_CR48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4900512
– volume: 88
  start-page: 052107
  year: 2013
  ident: BFsrep13359_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.052107
– volume: 2
  start-page: 2728
  year: 2011
  ident: BFsrep13359_CR56
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz201189p
– volume: 67
  start-page: 052109
  year: 2003
  ident: BFsrep13359_CR35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.67.052109
– volume: 102
  start-page: 100402
  year: 2009
  ident: BFsrep13359_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.100402
– volume: 86
  start-page: 016101
  year: 2012
  ident: BFsrep13359_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.016101
– volume: 113
  start-page: 140401
  year: 2014
  ident: BFsrep13359_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.140401
– volume: 113
  start-page: 170401
  year: 2014
  ident: BFsrep13359_CR52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.170401
– volume: 86
  start-page: 153
  year: 2014
  ident: BFsrep13359_CR54
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.153
– volume: 15
  start-page: 013017
  year: 2013
  ident: BFsrep13359_CR29
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/1/013017
– volume: 111
  start-page: 260501
  year: 2013
  ident: BFsrep13359_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.260501
– volume: 134
  start-page: 101103
  year: 2011
  ident: BFsrep13359_CR6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3563617
– volume: 84
  start-page: 032112
  year: 2011
  ident: BFsrep13359_CR13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.032112
– volume: 113
  start-page: 150402
  year: 2014
  ident: BFsrep13359_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.150402
– volume: 104
  start-page: 250401
  year: 2010
  ident: BFsrep13359_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.250401
– volume: 84
  start-page: 1242
  year: 2004
  ident: BFsrep13359_CR61
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1649803
– volume: 67
  start-page: 759
  year: 1995
  ident: BFsrep13359_CR40
  publication-title: s. Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.67.759
– volume: 17
  start-page: 033038
  year: 2015
  ident: BFsrep13359_CR55
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/3/033038
– ident: BFsrep13359_CR28
– volume: 70
  start-page: 3365
  year: 1993
  ident: BFsrep13359_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.3365
– volume: 7
  start-page: 931
  year: 2011
  ident: BFsrep13359_CR17
  publication-title: Nature Phys.
  doi: 10.1038/nphys2085
– volume: 105
  start-page: 237001
  year: 2010
  ident: BFsrep13359_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.237001
– volume: 94
  start-page: 113003
  year: 2005
  ident: BFsrep13359_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.113003
– ident: BFsrep13359_CR11
– volume: 163
  start-page: 485
  year: 2013
  ident: BFsrep13359_CR26
  publication-title: Faraday Discuss.
  doi: 10.1039/c3fd20144a
– volume: 82
  start-page: 012341
  year: 2010
  ident: BFsrep13359_CR14
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.012341
– volume: 76
  start-page: 1037
  year: 2004
  ident: BFsrep13359_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.1037
– volume: 9
  start-page: 113
  year: 2013
  ident: BFsrep13359_CR8
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2515
– volume: 105
  start-page: 050403
  year: 2010
  ident: BFsrep13359_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.050403
– volume: 139
  start-page: 164123
  year: 2013
  ident: BFsrep13359_CR27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4825358
– volume: 110
  start-page: 050403
  year: 2013
  ident: BFsrep13359_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.050403
– volume: 65
  start-page: 1697
  year: 1990
  ident: BFsrep13359_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.1697
– volume: 111
  start-page: 010402
  year: 2013
  ident: BFsrep13359_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.010402
– volume: 87
  start-page: 022106
  year: 2013
  ident: BFsrep13359_CR25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.022106
– volume: 8
  start-page: 264
  year: 2012
  ident: BFsrep13359_CR53
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2275
– volume: 90
  start-page: 032110
  year: 2014
  ident: BFsrep13359_CR31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.032110
– volume: 89
  start-page: 012307
  year: 2014
  ident: BFsrep13359_CR45
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.012307
– volume: 316
  start-page: 1462
  year: 2007
  ident: BFsrep13359_CR4
  publication-title: Science
  doi: 10.1126/science.1142188
– volume: 9
  start-page: 249
  year: 1945
  ident: BFsrep13359_CR32
  publication-title: J. Phys. (USSR)
– volume: 103
  start-page: 210401
  year: 2009
  ident: BFsrep13359_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.210401
– volume: 83
  start-page: 064102
  year: 2011
  ident: BFsrep13359_CR19
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.064102
– volume: 53
  start-page: 4107
  year: 1996
  ident: BFsrep13359_CR49
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.53.4107
– volume: 103
  start-page: 160502
  year: 2009
  ident: BFsrep13359_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.160502
– volume: 46
  start-page: 335302
  year: 2013
  ident: BFsrep13359_CR38
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/46/33/335302
– reference: 10053850 - Phys Rev Lett. 1993 May 31;70(22):3365-3368
– reference: 24182020 - J Chem Phys. 2013 Oct 28;139(16):164123
– reference: 23267114 - Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1203-8
– reference: 24020218 - Faraday Discuss. 2013;163:485-95; discussion 513-43
– reference: 21405149 - J Chem Phys. 2011 Mar 14;134(10):101103
– reference: 20867350 - Phys Rev Lett. 2010 Jun 25;104(25):250401
– reference: 23414008 - Phys Rev Lett. 2013 Feb 1;110(5):050403
– reference: 23862985 - Phys Rev Lett. 2013 Jul 5;111(1):010402
– reference: 22680702 - Phys Rev Lett. 2012 Apr 20;108(16):160402
– reference: 23215166 - Phys Rev Lett. 2012 Oct 26;109(17):170402
– reference: 21231496 - Phys Rev Lett. 2010 Dec 3;105(23):237001
– reference: 17268464 - Nature. 2007 Feb 1;445(7127):515-8
– reference: 24483786 - Phys Rev Lett. 2013 Dec 27;111(26):260501
– reference: 22735237 - Phys Chem Chem Phys. 2012 Aug 7;14(29):10094-108
– reference: 25381497 - J Chem Phys. 2014 Nov 7;141(17):174102
– reference: 24809395 - Sci Rep. 2014 May 08;4:4890
– reference: 9964724 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):4107-4121
– reference: 19905679 - Phys Rev Lett. 2009 Oct 16;103(16):160502
– reference: 25379903 - Phys Rev Lett. 2014 Oct 24;113(17):170401
– reference: 19392093 - Phys Rev Lett. 2009 Mar 13;102(10):100402
– reference: 21350481 - Nature. 2011 Feb 24;470(7335):486-91
– reference: 23414007 - Phys Rev Lett. 2013 Feb 1;110(5):050402
– reference: 15903852 - Phys Rev Lett. 2005 Mar 25;94(11):113003
– reference: 20867898 - Phys Rev Lett. 2010 Jul 30;105(5):050403
– reference: 25375693 - Phys Rev Lett. 2014 Oct 10;113(15):150402
– reference: 20366019 - Phys Rev Lett. 2009 Nov 20;103(21):210401
– reference: 10042340 - Phys Rev Lett. 1990 Oct 1;65(14):1697-1700
– reference: 25325620 - Phys Rev Lett. 2014 Oct 3;113(14):140401
– reference: 17556580 - Science. 2007 Jun 8;316(5830):1462-5
SSID ssj0000529419
Score 2.4292746
Snippet We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13359
SubjectTerms 639/766/483/481
639/766/483/640
Evolution
Humanities and Social Sciences
Laboratories
multidisciplinary
Open systems
Physics
Science
Trapping
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBddS2EvY23XLVtbsnUPfTGN7dhOnsYoPY5C93SDewuxz24PRnLbXR_631fK1-5jDEIIWImN5UiyJP8E8FVyYZ2VJXNBlwylX86ymQjMSBNQUqqZzuns8P0PPf6Z3k3VtHO4Lbu0yl4mNoJ6VjvykV_zjI54KjSHvy1-M6oaRdHVroTGKzgg6DJK6TJTM_hYKIqV8rwHFJLZNaqdBe7KCJl0XQ3t2Ja7KZJbcdJG_YzewpvOboy_t4w-gj1fHcNhW0nyGZ-aTE63PAGC2fZxHeI5pQXhKy1WM7No6sWOanG02W8xXq5-bE_7xdg7ATU8vIPJ6HZyM2ZdjQTmVJKumPDGcS2CTLzkWpVW4g8nuA7Coea3VFkn0QHVPrLKlCYrcX8R0CwJVqP-8vIU9qu68h8gVi6jFBKvElemIedWSG9SizebudyWEVz1M1a4Dj-cylj8Kpo4tsyKYXIj-DKQLlrQjH8RnfXTXnT_zbL4y-UIPg_NuOIpjFFWvn5CGoNmDqHK4Cfet1waehEaVTLXSQRmg38DAaFpb7ZU88cGVTvFvRvPdASXPafXhrU9-I__H_wneI2GlSLfs1BnsL_68-TP0XhZ2Ytmhb4ACKjxLA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Link
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgCIkL4k1hoPI4cKlokiZpj2himpDgNKTdqiZL2CTUTmw78O9x-oIxDkhVL3EbK05iO3Y-A9wyQpVWLAu0FVmAu18SxGNqA8mkxZ2Sj0Xi7g4_v4jBa_Q04qMaLHpep1VWkJblNt1kh92jvpihO8WTTdhyiO1uMvdErz1OcQGriCQNdhCLv79Y1ThrZuR6NuSvkGipafp7sFubiP5DxdQ-bJj8ALaropGfh-BwtI1fWH_q8n6QsAJjDhTacr52xTaq9DYfH11Mqut8PvbpkBjejmDYfxz2BkFdBCHQPIwWATVSE0EtCw0jgmeK4YqiRFiqUbUrVzonFBb1OspCZjLO0IGwaHdYJVBBGXYMnbzIzSn4XMcuR8TwUGeRTYiizMhI4UvFOlGZB3fNOKW6Bgh3dSre0zJQzeK0HVIPrlvSWYWK8RdRtxnstF4Y85TE7qYuR6_Gg6u2Gae0i1NkuSmWSCPRjnGwMfiLk0o2bS9UoM4lIvRArkitJXBw2ast-XRSwmZH6JyRWHhw08j3B1u_mT_7F9U57KABxd0ZM-Vd6Cw-luYCjZSFuiyn5xfx-ekd
  priority: 102
  providerName: Springer Nature
Title Role of initial system-bath correlation on coherence trapping
URI https://link.springer.com/article/10.1038/srep13359
https://www.ncbi.nlm.nih.gov/pubmed/26303160
https://www.proquest.com/docview/1899725182
https://www.proquest.com/docview/1707559969
https://pubmed.ncbi.nlm.nih.gov/PMC4548186
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bS8MwFD54QfBFvFsvo14efKmuaZO0DyJzKDJQRDfYW2myxAnSzbmB-_eeNG2ZU6G00Jw2aU6T851cvgNwFvhESBGkntQs9bD3i72oR7THA66xp6Q9Fpu9ww-P7L4Ttrq0uwBljM2iAj__dO1MPKnO6P3i62N6jQ3-ym4Zjy7RlgzR1aLxIiyjQeKmfT4UKN9SfJM49OOSV2j2CcMFzLAX93OKyhnD9Att_l40OTdzmhuku3VYK5Ck27Cq34AFlW3Cio0tOd0CQ7et3IF238zyIBS0nM2eQMjnShOTw66Cc_GQg77d9edinoaw4XUb2ne37ea9V8RK8CSth2OPKC59RnRQV_gxNBUBNjziM00kIgBhIuzUmUbzjyrjKY9S9DM0whMtGNoxFezAUjbI1B64VEZmKYmidZmGOvYFCRQPBZ5EJGOROnBe1lMiCx5xE87iPcnns4MoqWrXgZNKdGjJM_4SOiwrOynVn_iR2dBL0flx4LhKxj_fTGekmRpMUIYj3DHsMviKXaubKpdSqQ7wH1qrBAyr9s-U7K2fs2uH6MP5EXPgtNTvTLHmC7__b84HsIrYiprhZ0IPYWk8mqgjxC9jUYNF3uU1WG40Wi8tvN7cPj49490ma9byMYFa_v9-Ayfi9ck
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9wwEB6SDSV9KT1TN0nrpi30RcSSLNl-KCXNweZaStlC3oyllZJAsbfdDSU_Kv-xM76ao_QtYIzBsi1Lo5lPmtE3AO8lF8YaWTDrdcFQ-2UsnQjPEpl41JRqojPaO3w80sPv8cGJOlmAq24vDIVVdjqxVtSTytIa-SZPaYunQjj8efqTUdYo8q52KTQasTh0l79xyjb7tL-D_ftBiL3d8faQtVkFmFVRPGfCJZZr4WXkJNeqMBJFVHDthUVbaSgXTaQ9Gkr8uaRI0gIRuUdD7o1Gje8kvnYRlmKJM5kBLH3ZHX391i_qkNss5lnHYCTTTbRzU5wGEhXqdbt3B8zejcm85Zit7d3eY3jUAtVwq5GsJ7DgyqfwoEldeYlXdeionT0D4vV2YeXDc4pDwkcacmhmEFuGlpJ_NOF2IR62Omu2F4b4dWKGOH0O4_tovhcwKKvSvYRQ2ZRiVpyKbBH7jBshXRIbPJnUZqYI4GPXYrltCcspb8aPvHacyzTvGzeAjb7otGHp-Fehta7Z83agzvK_YhXA2_42DjHymxSlqy6wTIK4imhs8BUrTS_1XxEaMQDXUQDJjf7rCxB998075flZTeMd42SRpzqAd11PX6vW7cq_-n_l38DycHx8lB_tjw5X4SGiOkUL30KtwWD-68KtI3Kam9etvIaQ3_MI-QP9cyzm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAvCAqU0AIpD4mLtbEd28kBoapl1RcVhyLtLYq9Nq1UJQu7FepP4991Ji_6QNwqrVYrxZs49jw-e8bfALyXXFhnZclc0CVD65ezbCoCM9IEtJRqqnM6O_z1SO9-T_cnarIEf_qzMJRW2dvExlBPa0d75COe0RFPhXB4FLq0iG8748-zn4wqSFGktS-n0YrIgb_4jcu3-ae9HZzrD0KMvxxv77KuwgBzKkkXTHjjuBZBJl5yrUorUVwF10E49JuW6tIkOqDTxBc1pclKROcBnXqwGq2_l3jbe3DfSMVJxczEDNs7FEBLed5zGclshB5vhgtCIkW96gFvwdrb2Zk3QrSN5xs_hkcdZI23Whl7Aku-WoUHbRHLC_zVJJG6-VMghm8f1yE-pYwk_EtLE80soszYURmQNvEuxo-rT9qDhjE-nTgifjyD47sYvOewXNWVfwGxchllr3iVuDINObdCepNa_LKZy20Zwcd-xArXUZdTBY2zogmhy6wYBjeCt0PTWcvX8a9GG_2wF53Kzou_AhbB5nAZlY0iKGXl63NsYxBhEaEN3mKtnaXhKUIjGuA6icBcm7-hARF5X79SnZ40hN4pLht5piN418_0lW7d7PzL_3f-DTxEvSgO944O1mEF4Z2iHXChNmB58evcv0IItbCvG2GNobhj5bgEocwvtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+initial+system-bath+correlation+on+coherence+trapping&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Ying-Jie&rft.au=Han%2C+Wei&rft.au=Xia%2C+Yun-Jie&rft.au=Yu%2C+Yan-Mei&rft.date=2015-08-25&rft.eissn=2045-2322&rft.volume=5&rft.spage=13359&rft_id=info:doi/10.1038%2Fsrep13359&rft_id=info%3Apmid%2F26303160&rft.externalDocID=26303160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon