Role of initial system-bath correlation on coherence trapping
We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than...
Saved in:
Published in | Scientific reports Vol. 5; no. 1; p. 13359 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.08.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored. |
---|---|
AbstractList | We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored. We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored.We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored. |
ArticleNumber | 13359 |
Author | Han, Wei Zhang, Ying-Jie Yu, Yan-Mei Fan, Heng Xia, Yun-Jie |
Author_xml | – sequence: 1 givenname: Ying-Jie surname: Zhang fullname: Zhang, Ying-Jie organization: Department of Physics, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 2 givenname: Wei surname: Han fullname: Han, Wei organization: Department of Physics, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University – sequence: 3 givenname: Yun-Jie surname: Xia fullname: Xia, Yun-Jie organization: Department of Physics, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University – sequence: 4 givenname: Yan-Mei surname: Yu fullname: Yu, Yan-Mei organization: Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences – sequence: 5 givenname: Heng surname: Fan fullname: Fan, Heng organization: Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Innovative Center of Quantum Matter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26303160$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdtLBCEUxiWKLlsP_QMx0EsFU15GHR8KIrrBQhC9i2Nndo1ZnXQ26L_P2ortIoKCv_Odz_NtoVUfPCC0S_Axwaw-SRF6whhXK2iT4oqXlFG6unTfQDspPeG8OFUVUetogwqGGRF4E53ehw6K0BbOu8GZrkivaYBZ2ZhhWtgQI3RmcMEXedswhQjeQjFE0_fOT7bRWmu6BDuf5wg9XF0-XNyU47vr24vzcWk5roaSgrRE0JZhyF25aZhUjBLRUkspbQSVFRZtTRRYK42sDZeixYK1jWAVATZCZwvZft7M4NGCzwY63Uc3M_FVB-P0zxfvpnoSXnTFq5rUIgscfArE8DyHNOiZSxa6zngI86SJxJJzpYTK6P4v9CnMo8-_06RWSlJOapqpvWVH31a-BpuBkwVgY0g5olZbN3xMMht0nSZYv6env9PLFYe_Kr5E_2OPFmzKjJ9AXDL5B34DeD2nsg |
CitedBy_id | crossref_primary_10_1103_PhysRevA_106_042219 crossref_primary_10_1103_PhysRevLett_132_140402 crossref_primary_10_1038_srep19365 crossref_primary_10_1016_j_aop_2017_10_017 crossref_primary_10_1142_S0217984923502457 crossref_primary_10_1007_s11128_017_1584_0 crossref_primary_10_1103_PhysRevB_100_224301 crossref_primary_10_1088_1751_8121_acd231 crossref_primary_10_1088_1612_202X_abef02 crossref_primary_10_1103_PhysRevA_98_022114 crossref_primary_10_1002_andp_202100412 crossref_primary_10_1016_j_physrep_2018_07_004 crossref_primary_10_1103_RevModPhys_89_041003 crossref_primary_10_1016_j_rinp_2024_107333 crossref_primary_10_1088_1402_4896_ac74ef crossref_primary_10_1088_1674_1056_25_8_080304 crossref_primary_10_1088_1674_1056_abe1a9 crossref_primary_10_1007_s10773_019_04305_2 crossref_primary_10_1142_S0217979224504290 crossref_primary_10_1103_PhysRevLett_116_240405 crossref_primary_10_1103_PhysRevLett_121_070401 crossref_primary_10_1038_srep29260 crossref_primary_10_1103_PhysRevA_96_032117 crossref_primary_10_1007_s11128_021_03018_y crossref_primary_10_1088_1367_2630_ac2c2a crossref_primary_10_1140_epjc_s10052_022_10700_7 crossref_primary_10_1088_1402_4896_ad7f11 crossref_primary_10_1007_s10773_020_04693_w crossref_primary_10_1088_1402_4896_ada2be crossref_primary_10_1088_1612_202X_ab1420 crossref_primary_10_1088_1674_1056_27_1_010302 crossref_primary_10_1002_qute_202100040 crossref_primary_10_1088_1612_202X_abf0ab crossref_primary_10_1088_1612_202X_ab6aa4 crossref_primary_10_1016_j_aop_2016_08_014 crossref_primary_10_1016_j_aop_2016_12_007 crossref_primary_10_1088_1751_8121_50_4_045301 crossref_primary_10_1088_1402_4896_ad6698 crossref_primary_10_1088_1572_9494_acdce8 crossref_primary_10_1103_PhysRevA_104_042205 crossref_primary_10_1140_epjd_e2018_90416_0 crossref_primary_10_1088_1612_202X_ab00fa crossref_primary_10_1088_1674_1056_26_11_110303 crossref_primary_10_1016_j_aop_2024_169825 crossref_primary_10_1103_PhysRevA_101_022114 crossref_primary_10_1103_PhysRevA_104_012211 crossref_primary_10_1038_s41598_024_57150_7 crossref_primary_10_1103_PhysRevA_108_012218 crossref_primary_10_1088_2058_9565_aaf43d crossref_primary_10_1103_PhysRevA_95_052106 crossref_primary_10_1103_PhysRevResearch_6_013317 crossref_primary_10_1088_1751_8121_ad707e crossref_primary_10_1103_PhysRevA_101_052334 crossref_primary_10_1140_epjc_s10052_023_11306_3 crossref_primary_10_1140_epjd_e2016_70460_6 |
Cites_doi | 10.1103/PhysRevA.79.012104 10.1103/PhysRevLett.110.050402 10.1038/nature05461 10.1039/c2cp40815e 10.1103/PhysRevLett.108.160402 10.1038/nature09801 10.1209/0295-5075/92/60010 10.1103/PhysRevLett.109.170402 10.1038/srep04890 10.1103/PhysRevA.83.032103 10.1103/PhysRevA.82.022108 10.1073/pnas.1211157110 10.1103/PhysRevA.77.062303 10.1093/acprof:oso/9780199213900.001.0001 10.1103/PhysRevA.89.024101 10.1103/PhysRevA.82.022107 10.1063/1.4900512 10.1103/PhysRevA.88.052107 10.1021/jz201189p 10.1103/PhysRevA.67.052109 10.1103/PhysRevLett.102.100402 10.1103/PhysRevA.86.016101 10.1103/PhysRevLett.113.140401 10.1103/PhysRevLett.113.170401 10.1103/RevModPhys.86.153 10.1088/1367-2630/15/1/013017 10.1103/PhysRevLett.111.260501 10.1063/1.3563617 10.1103/PhysRevA.84.032112 10.1103/PhysRevLett.113.150402 10.1103/PhysRevLett.104.250401 10.1063/1.1649803 10.1103/RevModPhys.67.759 10.1088/1367-2630/17/3/033038 10.1103/PhysRevLett.70.3365 10.1038/nphys2085 10.1103/PhysRevLett.105.237001 10.1103/PhysRevLett.94.113003 10.1039/c3fd20144a 10.1103/PhysRevA.82.012341 10.1103/RevModPhys.76.1037 10.1038/nphys2515 10.1103/PhysRevLett.105.050403 10.1063/1.4825358 10.1103/PhysRevLett.110.050403 10.1103/PhysRevLett.65.1697 10.1103/PhysRevLett.111.010402 10.1103/PhysRevA.87.022106 10.1038/nphys2275 10.1103/PhysRevA.90.032110 10.1103/PhysRevA.89.012307 10.1126/science.1142188 10.1103/PhysRevLett.103.210401 10.1103/PhysRevA.83.064102 10.1103/PhysRevE.53.4107 10.1103/PhysRevLett.103.160502 10.1088/1751-8113/46/33/335302 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Copyright Nature Publishing Group Aug 2015 Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited |
Copyright_xml | – notice: The Author(s) 2015 – notice: Copyright Nature Publishing Group Aug 2015 – notice: Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/srep13359 |
DatabaseName | Springer Nature Link CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2045-2322 |
ExternalDocumentID | PMC4548186 26303160 10_1038_srep13359 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c504t-2e7c162f30e3165ab3793216f2c222b627406f819ecc7a78a576f063fb6341e3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:24:14 EDT 2025 Mon Jul 21 09:37:48 EDT 2025 Sat Aug 23 13:52:32 EDT 2025 Thu Apr 03 07:05:55 EDT 2025 Tue Jul 01 03:15:01 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Fri Feb 21 02:39:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-2e7c162f30e3165ab3793216f2c222b627406f819ecc7a78a576f063fb6341e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep13359 |
PMID | 26303160 |
PQID | 1899725182 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4548186 proquest_miscellaneous_1707559969 proquest_journals_1899725182 pubmed_primary_26303160 crossref_citationtrail_10_1038_srep13359 crossref_primary_10_1038_srep13359 springer_journals_10_1038_srep13359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-25 |
PublicationDateYYYYMMDD | 2015-08-25 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007). ÅbergJCatalytic coherencePhys. Rev. Lett.20141131504022014PhRvL.113o0402A2537569310.1103/PhysRevLett.113.1504021:CAS:528:DC%2BC2cXhvFKqsLjK VandershypenLMKChuangILNMR techniques for quantum control and computationRev. Mod. Phys.20047610372004RvMP...76.1037V10.1103/RevModPhys.76.1037 PfeiferPFröhlichJGeneralized time-energy uncertainty relations and bounds on lifetimes of resonans. Rev. Mod. Phys.1995677591995RvMP...67..759P1:CAS:528:DyaK28Xhslagt7Y%3D10.1103/RevModPhys.67.759 PachónLABrumerPIncoherent excitation of thermally equilibrated open quantum systemsPhys. Rev. A2013870221062013PhRvA..87b2106P10.1103/PhysRevA.87.0221061:CAS:528:DC%2BC3sXksVGrt7c%3D AnandanJAharonovYGeometry of quantum evolutionPhys. Rev. Lett.199065169717001990PhRvL..65.1697A10713481:STN:280:DC%2BC2sfoslOhtg%3D%3D100423400960.8152410.1103/PhysRevLett.65.1697 Pachón, L. A., Triana, J. F., Zueco, D. & Brumer, P. Uncertainty principle consequences at thermal equilibrium. arXiv: 1401.1418 (2014). JonesPJKokPGeometric derivation of the quantum speed limitPhys. Rev. A2010820221072010PhRvA..82b2107J277201110.1103/PhysRevA.82.0221071:CAS:528:DC%2BC3cXhtFSrsrvP CederbaumLSGindenspergerEBurghardtIShort-time dynamics through conical intersections in macrosystemsPhys. Rev. Lett.2005941130032005PhRvL..94k3003C1590385210.1103/PhysRevLett.94.1130031:CAS:528:DC%2BD2MXisl2ksrw%3D SmirneAExperimental investigation of initial system-environment correlations via trace-distance evolutionPhys. Rev. A2011840321122011PhRvA..84c2112S10.1103/PhysRevA.84.0321121:CAS:528:DC%2BC3MXht1Ghs7rI DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131110104022013PhRvL.111a0402D2386298510.1103/PhysRevLett.111.0104021:CAS:528:DC%2BC3sXhtFOqsrnJ HegerfeldtGCHigh-speed driving of a two-level systemPhys. Rev. A2014900321102014PhRvA..90c2110H10.1103/PhysRevA.90.0321101:CAS:528:DC%2BC2cXhvVClsrbJ BaumgratzTCramerMPlenioMBQuantifying coherencePhys. Rev. Lett.20141131404012014PhRvL.113n0401B1:STN:280:DC%2BC2M3hs1Sltw%3D%3D2532562010.1103/PhysRevLett.113.140401 Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 2008). PachónLABrumerPComputational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexesPhys. Chem. Chem. Phys.201214100942273523710.1039/c2cp40815e1:CAS:528:DC%2BC38XpvVarurY%3D BarreiroJTAn open-system quantum simulator with trapped ionsNature20114704862011Natur.470..486B1:CAS:528:DC%2BC3MXisVagur4%3D2135048110.1038/nature09801 DeffnerSLutzEEnergy-time uncertainty relation for driven quantum systemsJ. Phys. A: Math. Theor.20134633530230853871273.8100910.1088/1751-8113/46/33/335302 LevitinLBToffoliTFundamental limit on the rate of quantum dynamics: the unified bound is tightPhys. Rev. Lett.20091031605022009PhRvL.103p0502L1990567910.1103/PhysRevLett.103.1605021:CAS:528:DC%2BD1MXht1OrtbfK TonyJGMemory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chainPhys. Rev. A2011830321032011PhRvA..83c2102T10.1103/PhysRevA.83.0321031:CAS:528:DC%2BC3MXkt1Ghs7Y%3D DijkstraAGTanimuraYNon-Markovian entanglement dynamics in the presence of system-bath coherencePhys. Rev. Lett.20101042504012010PhRvL.104y0401D2086735010.1103/PhysRevLett.104.2504011:CAS:528:DC%2BC3cXosV2ksLg%3D MandelstamLTammIThe uncertainty relation between energy and time in nonrelativistic quantum mechanicsJ. Phys. (USSR)19459249254153340060.45003 DajkaJŁuczkaJDistance growth of quantum states due to initial system-environment correlationsPhys. Rev. A2010820123412010PhRvA..82a2341D10.1103/PhysRevA.82.0123411:CAS:528:DC%2BC3cXpsF2hu70%3D LeeHChengYCFlemingGRCoherence dynamics in photosynthesis: Protein protection of excitonic coherenceScience200731614622007Sci...316.1462L1:CAS:528:DC%2BD2sXmtFSjsbs%3D1755658010.1126/science.1142188 LaineEMPiiloJBreuerHPWitness for initial system-environment correlations in open-system dynamicsEurophys. Lett.201092600102010EL.....9260010L10.1209/0295-5075/92/600101:CAS:528:DC%2BC3MXktVGrtLw%3D BendicksonJMDowlingJPScaloraMAnalytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structuresPhys. Rev. E19965341071996PhRvE..53.4107B1:CAS:528:DyaK28XisVSnt7c%3D10.1103/PhysRevE.53.4107 ZhangYJHanWXiaYJCaoJPFanHQuantum speed limit for arbitrary initial statesSci. Rep.2014448901:CAS:528:DC%2BC2MXktlOgtLY%3D24809395401393710.1038/srep04890 XieQTCuiSCaoJPLuigiAFanHAnisotropic Rabi modelPhys. Rev. X20144021046 PachónLABrumerPDirect experimental determination of spectral densities of molecular complexesJ. Chem. Phys.20141411741022014JChPh.141q4102P2538149710.1063/1.49005121:CAS:528:DC%2BC2cXhvVGnsr7P CiracJIZollerPGoals and opportunities in quantum simulationNat. Phys.201282641:CAS:528:DC%2BC38XkvVGqs74%3D10.1038/nphys2275 GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861532014RvMP...86..153G10.1103/RevModPhys.86.153 PachónLABrumerPMechanisms in environmentally assisted one-photon phase controlJ. Chem. Phys.20131391641232013JChPh.139p4123P2418202010.1063/1.48253581:CAS:528:DC%2BC3sXhslWmurrO LiCFTangJSLiYLGuoGCExperimentally witnessing the initial correlation between an open quantum system and its environmentPhys. Rev. A2011830641022011PhRvA..83f4102L10.1103/PhysRevA.83.0641021:CAS:528:DC%2BC3MXosVWjsLs%3D ChinAWThe role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexesNat. Phys.201391131:CAS:528:DC%2BC3sXjslGmtQ%3D%3D10.1038/nphys2515 TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131100504022013PhRvL.110e0402T1:STN:280:DC%2BC3szoslynsA%3D%3D2341400710.1103/PhysRevLett.110.050402 SchusterDIResolving photon number states in a superconducting circuitNature20074455152007Natur.445..515S1:CAS:528:DC%2BD2sXhtFWht7c%3D1726846410.1038/nature05461 ZwierzMComment on geometric derivation of the quantum speed limitPhys. Rev. A2012860161012012PhRvA..86a6101Z10.1103/PhysRevA.86.0161011:CAS:528:DC%2BC38Xht1agurfI BreuerHPLaineEMPiiloJMeasure for the degree of non-Markovian behavior of quantum processes in open systemsPhys. Rev. Lett.20091032104012009PhRvL.103u0401B25700182036601910.1103/PhysRevLett.103.2104011:CAS:528:DC%2BD1MXhsVCrurfF WongCWStrain-tunable silicon photonic band gap microcavities in optical waveguidesAppl. Phys. Lett.20048412422004ApPhL..84.1242W1:CAS:528:DC%2BD2cXhsVylt7s%3D10.1063/1.1649803 Forn-DiazPObservation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regimePhys. Rev. Lett.20101052370012010PhRvL.105w7001F1:STN:280:DC%2BC3M7htlOlsA%3D%3D2123149610.1103/PhysRevLett.105.237001 ZhangWMGeneral non-Markovian dynamics of open quantum systemsPhys. Rev. Lett.20121091704022012PhRvL.109q0402Z2321516610.1103/PhysRevLett.109.1704021:CAS:528:DC%2BC38Xhs12rsrzO RebentrostPAspuru-GuzikACommunication: Exciton-phonon information flow in the energy transfer process of photosynthetic complexesJ. Chem. Phys.20111341011032011JChPh.134j1103R2140514910.1063/1.35636171:CAS:528:DC%2BC3MXivFyqtL4%3D XuZYLuoSLYangWLLiuCZhuSQQuantum speedup in memory environmentPhys. Rev. A2014890123072014PhRvA..89a2307X10.1103/PhysRevA.89.0123071:CAS:528:DC%2BC2cXjsVSgsb8%3D del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.20131100504032013PhRvL.110e0403D1:STN:280:DC%2BC3szoslynsQ%3D%3D2341400810.1103/PhysRevLett.110.050403 DajkaJŁuczkaJOrigination and survival of qudit-qudit entanglement in open systemsPhys. Rev. A2008770623032008PhRvA..77f2303D249141210.1103/PhysRevA.77.0623031:CAS:528:DC%2BD1cXot1Klt7s%3D HegerfeldtGCDriving at the quantum speed limit: optimal control of a two-level systemPhys. Rev. Lett.20131112605012013PhRvL.111z0501H2448378610.1103/PhysRevLett.111.2605011:CAS:528:DC%2BC2cXpvVWhtA%3D%3D GiovannettiVLloydSMacconeLQuantum limits to dynamical evolutionPhys. Rev. A2003670521092003PhRvA..67e2109G10.1103/PhysRevA.67.0521091:CAS:528:DC%2BD3sXksVWjsbw%3D AddisCBrebnerGHaikkaPManiscalcoSCoherence trapping and information backflow in dephasing qubitsPhys. Rev. A2014890241012014PhRvA..89b4101A10.1103/PhysRevA.89.0241011:CAS:528:DC%2BC2cXltFeksrY%3D PachónLAYuLBrumerPCoherent one-photon phase control in closed and open quantum systems: A general master equation approachFaraday Discuss.20131634852013FaDi..163..485P2402021810.1039/c3fd20144a1:CAS:528:DC%2BC3sXhtFClsL%2FM Nielsen, M. & Chuang, I. Quantum Computation and Quantum Communication (Cambridge University Press, Cambridge, 2000). DajkaJMierzejewskiMŁuczkaJFidelity of asymmetric dephasing channelsPhys. Rev. A2009 790121042009PhRvA..79a2104D10.1103/PhysRevA.79.0121041:CAS:528:DC%2BD1MXhtlGrurk%3D EstradaAFPachónLAQuantum limit for driven linear non-Markovian open-quantum-systemsNew J. Phys.2015170330382015NJPh...17c3038E333533710.1088/1367-2630/17/3/0330381452.81144 PachónLABrumerPPhysical basis for long-lived electronic coherence in photosynthetic light-harvesting systemsJ. Phys. Chem. Lett.20112272810.1021/jz201189p1:CAS:528:DC%2BC3MXhtlWjtrfI RivasAHuelgaSFPlenioMBEntanglement and non-Markovianity of quantum evolutionsPhys. Rev. Lett.20101050504032010PhRvL.105e0403R26730362086789810.1103/PhysRevLett.105.0504031:CAS:528:DC%2BC3cXpsFKgtLw%3D TiwariVPetersWKJonasDMElectronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic frameworkPNAS201311012032013PNAS..110.1203T1:CAS:528:DC%2BC3sXhvFert7s%3D2326711410.1073/pnas.1211157110 ChaudhryAZGongJBRole of initial system-environment correlations: A master equation approachPhys. Rev. A2013880521072013PhRvA..88e2107C10.1103/PhysRevA.88.0521071:CAS:528:DC%2BC3sXhvFynurvE LiuBHExperimental control of the transition from Markovian to non-Markovian dynamics of open quantum systemsNature Phys.201179312011NatPh...7..931L1:CAS:528:DC%2BC3MXhtF2isLnK10.1038/nphys2085 ShabaniALidarDAVanishing quantum discord is AF Estrada (BFsrep13359_CR55) 2015; 17 JG Tony (BFsrep13359_CR7) 2011; 83 QT Xie (BFsrep13359_CR60) 2014; 4 LA Pachón (BFsrep13359_CR26) 2013; 163 ZY Xu (BFsrep13359_CR45) 2014; 89 JI Cirac (BFsrep13359_CR53) 2012; 8 M Zwierz (BFsrep13359_CR37) 2012; 86 DI Schuster (BFsrep13359_CR62) 2007; 445 HP Breuer (BFsrep13359_CR15) 2009; 103 AZ Chaudhry (BFsrep13359_CR24) 2013; 88 P Pfeifer (BFsrep13359_CR40) 1995; 67 S Deffner (BFsrep13359_CR43) 2013; 111 GC Hegerfeldt (BFsrep13359_CR31) 2014; 90 LB Levitin (BFsrep13359_CR34) 2009; 103 BFsrep13359_CR11 AD Cimmarusti (BFsrep13359_CR29) 2013; 15 AG Dijkstra (BFsrep13359_CR22) 2010; 104 S Deffner (BFsrep13359_CR38) 2013; 46 LMK Vandershypen (BFsrep13359_CR2) 2004; 76 V Tiwari (BFsrep13359_CR57) 2013; 110 J Dajka (BFsrep13359_CR14) 2010; 82 A Smirne (BFsrep13359_CR13) 2011; 84 BH Liu (BFsrep13359_CR17) 2011; 7 IM Georgescu (BFsrep13359_CR54) 2014; 86 AW Chin (BFsrep13359_CR8) 2013; 9 J Dajka (BFsrep13359_CR46) 2008; 77 P Forn-Diaz (BFsrep13359_CR59) 2010; 105 CF Li (BFsrep13359_CR19) 2011; 83 C Addis (BFsrep13359_CR12) 2014; 89 BFsrep13359_CR28 L Mandelstam (BFsrep13359_CR32) 1945; 9 A del Campo (BFsrep13359_CR42) 2013; 110 YJ Zhang (BFsrep13359_CR44) 2014; 4 A Rivas (BFsrep13359_CR16) 2010; 105 LA Pachón (BFsrep13359_CR56) 2011; 2 JT Barreiro (BFsrep13359_CR58) 2011; 470 JM Bendickson (BFsrep13359_CR49) 1996; 53 CW Wong (BFsrep13359_CR61) 2004; 84 BFsrep13359_CR3 H Lee (BFsrep13359_CR4) 2007; 316 BFsrep13359_CR1 P Rebentrost (BFsrep13359_CR6) 2011; 134 LA Pachón (BFsrep13359_CR25) 2013; 87 J Åberg (BFsrep13359_CR51) 2014; 113 EM Laine (BFsrep13359_CR18) 2010; 92 WM Zhang (BFsrep13359_CR21) 2012; 109 P Pfeifer (BFsrep13359_CR39) 1993; 70 GC Hegerfeldt (BFsrep13359_CR30) 2013; 111 LA Pachón (BFsrep13359_CR9) 2012; 14 T Baumgratz (BFsrep13359_CR50) 2014; 113 MM Taddei (BFsrep13359_CR41) 2013; 110 SF Huelga (BFsrep13359_CR10) 2012; 108 PJ Jones (BFsrep13359_CR36) 2010; 82 D Girolami (BFsrep13359_CR52) 2014; 113 YJ Zhang (BFsrep13359_CR20) 2010; 82 J Anandan (BFsrep13359_CR33) 1990; 65 V Giovannetti (BFsrep13359_CR35) 2003; 67 J Dajka (BFsrep13359_CR47) 2009; 79 LA Pachón (BFsrep13359_CR27) 2013; 139 LA Pachón (BFsrep13359_CR48) 2014; 141 LS Cederbaum (BFsrep13359_CR5) 2005; 94 A Shabani (BFsrep13359_CR23) 2009; 102 22680702 - Phys Rev Lett. 2012 Apr 20;108(16):160402 23862985 - Phys Rev Lett. 2013 Jul 5;111(1):010402 23215166 - Phys Rev Lett. 2012 Oct 26;109(17):170402 20867350 - Phys Rev Lett. 2010 Jun 25;104(25):250401 20366019 - Phys Rev Lett. 2009 Nov 20;103(21):210401 20867898 - Phys Rev Lett. 2010 Jul 30;105(5):050403 22735237 - Phys Chem Chem Phys. 2012 Aug 7;14(29):10094-108 25379903 - Phys Rev Lett. 2014 Oct 24;113(17):170401 24182020 - J Chem Phys. 2013 Oct 28;139(16):164123 21405149 - J Chem Phys. 2011 Mar 14;134(10):101103 19905679 - Phys Rev Lett. 2009 Oct 16;103(16):160502 21350481 - Nature. 2011 Feb 24;470(7335):486-91 19392093 - Phys Rev Lett. 2009 Mar 13;102(10):100402 23267114 - Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1203-8 10042340 - Phys Rev Lett. 1990 Oct 1;65(14):1697-1700 25375693 - Phys Rev Lett. 2014 Oct 10;113(15):150402 23414008 - Phys Rev Lett. 2013 Feb 1;110(5):050403 10053850 - Phys Rev Lett. 1993 May 31;70(22):3365-3368 25325620 - Phys Rev Lett. 2014 Oct 3;113(14):140401 23414007 - Phys Rev Lett. 2013 Feb 1;110(5):050402 17556580 - Science. 2007 Jun 8;316(5830):1462-5 24020218 - Faraday Discuss. 2013;163:485-95; discussion 513-43 15903852 - Phys Rev Lett. 2005 Mar 25;94(11):113003 24809395 - Sci Rep. 2014 May 08;4:4890 21231496 - Phys Rev Lett. 2010 Dec 3;105(23):237001 9964724 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):4107-4121 24483786 - Phys Rev Lett. 2013 Dec 27;111(26):260501 25381497 - J Chem Phys. 2014 Nov 7;141(17):174102 17268464 - Nature. 2007 Feb 1;445(7127):515-8 |
References_xml | – reference: Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007). – reference: JonesPJKokPGeometric derivation of the quantum speed limitPhys. Rev. A2010820221072010PhRvA..82b2107J277201110.1103/PhysRevA.82.0221071:CAS:528:DC%2BC3cXhtFSrsrvP – reference: del CampoAEgusquizaILPlenioMBHuelgaSFQuantum speed limits in open system dynamicsPhys. Rev. Lett.20131100504032013PhRvL.110e0403D1:STN:280:DC%2BC3szoslynsQ%3D%3D2341400810.1103/PhysRevLett.110.050403 – reference: Nielsen, M. & Chuang, I. Quantum Computation and Quantum Communication (Cambridge University Press, Cambridge, 2000). – reference: BendicksonJMDowlingJPScaloraMAnalytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structuresPhys. Rev. E19965341071996PhRvE..53.4107B1:CAS:528:DyaK28XisVSnt7c%3D10.1103/PhysRevE.53.4107 – reference: BreuerHPLaineEMPiiloJMeasure for the degree of non-Markovian behavior of quantum processes in open systemsPhys. Rev. Lett.20091032104012009PhRvL.103u0401B25700182036601910.1103/PhysRevLett.103.2104011:CAS:528:DC%2BD1MXhsVCrurfF – reference: WongCWStrain-tunable silicon photonic band gap microcavities in optical waveguidesAppl. Phys. Lett.20048412422004ApPhL..84.1242W1:CAS:528:DC%2BD2cXhsVylt7s%3D10.1063/1.1649803 – reference: PachónLAYuLBrumerPCoherent one-photon phase control in closed and open quantum systems: A general master equation approachFaraday Discuss.20131634852013FaDi..163..485P2402021810.1039/c3fd20144a1:CAS:528:DC%2BC3sXhtFClsL%2FM – reference: CiracJIZollerPGoals and opportunities in quantum simulationNat. Phys.201282641:CAS:528:DC%2BC38XkvVGqs74%3D10.1038/nphys2275 – reference: LiCFTangJSLiYLGuoGCExperimentally witnessing the initial correlation between an open quantum system and its environmentPhys. Rev. A2011830641022011PhRvA..83f4102L10.1103/PhysRevA.83.0641021:CAS:528:DC%2BC3MXosVWjsLs%3D – reference: RebentrostPAspuru-GuzikACommunication: Exciton-phonon information flow in the energy transfer process of photosynthetic complexesJ. Chem. Phys.20111341011032011JChPh.134j1103R2140514910.1063/1.35636171:CAS:528:DC%2BC3MXivFyqtL4%3D – reference: HegerfeldtGCDriving at the quantum speed limit: optimal control of a two-level systemPhys. Rev. Lett.20131112605012013PhRvL.111z0501H2448378610.1103/PhysRevLett.111.2605011:CAS:528:DC%2BC2cXpvVWhtA%3D%3D – reference: ShabaniALidarDAVanishing quantum discord is necessary and sufficient for completely positive mapsPhys. Rev. Lett.20091021004022009PhRvL.102j0402S1939209310.1103/PhysRevLett.102.1004021:CAS:528:DC%2BD1MXjt1Ciu7s%3D – reference: ChinAWThe role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexesNat. Phys.201391131:CAS:528:DC%2BC3sXjslGmtQ%3D%3D10.1038/nphys2515 – reference: ZwierzMComment on geometric derivation of the quantum speed limitPhys. Rev. A2012860161012012PhRvA..86a6101Z10.1103/PhysRevA.86.0161011:CAS:528:DC%2BC38Xht1agurfI – reference: VandershypenLMKChuangILNMR techniques for quantum control and computationRev. Mod. Phys.20047610372004RvMP...76.1037V10.1103/RevModPhys.76.1037 – reference: TiwariVPetersWKJonasDMElectronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic frameworkPNAS201311012032013PNAS..110.1203T1:CAS:528:DC%2BC3sXhvFert7s%3D2326711410.1073/pnas.1211157110 – reference: DajkaJŁuczkaJDistance growth of quantum states due to initial system-environment correlationsPhys. Rev. A2010820123412010PhRvA..82a2341D10.1103/PhysRevA.82.0123411:CAS:528:DC%2BC3cXpsF2hu70%3D – reference: CimmarustiADControl of conditional quantum beats in cavity QED: amplitude decoherence and phase shiftsNew J. Phys.2013150130172013NJPh...15a3017C10.1088/1367-2630/15/1/0130171:CAS:528:DC%2BC2cXntVKgtLc%3D – reference: XuZYLuoSLYangWLLiuCZhuSQQuantum speedup in memory environmentPhys. Rev. A2014890123072014PhRvA..89a2307X10.1103/PhysRevA.89.0123071:CAS:528:DC%2BC2cXjsVSgsb8%3D – reference: ÅbergJCatalytic coherencePhys. Rev. Lett.20141131504022014PhRvL.113o0402A2537569310.1103/PhysRevLett.113.1504021:CAS:528:DC%2BC2cXhvFKqsLjK – reference: SmirneAExperimental investigation of initial system-environment correlations via trace-distance evolutionPhys. Rev. A2011840321122011PhRvA..84c2112S10.1103/PhysRevA.84.0321121:CAS:528:DC%2BC3MXht1Ghs7rI – reference: XieQTCuiSCaoJPLuigiAFanHAnisotropic Rabi modelPhys. Rev. X20144021046 – reference: HuelgaSFRivasAPlenioMBNon-Markovianity-sssisted steady state entanglementPhys. Rev. Lett.20121081604022012PhRvL.108p0402H2268070210.1103/PhysRevLett.108.1604021:CAS:528:DC%2BC38XpsVSjsrg%3D – reference: PfeiferPHow fast can a quantum state change with time?Phys. Rev. Lett.19937033651993PhRvL..70.3365P1:STN:280:DC%2BC2sfptlamtA%3D%3D1005385010.1103/PhysRevLett.70.3365 – reference: PachónLABrumerPComputational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexesPhys. Chem. Chem. Phys.201214100942273523710.1039/c2cp40815e1:CAS:528:DC%2BC38XpvVarurY%3D – reference: RivasAHuelgaSFPlenioMBEntanglement and non-Markovianity of quantum evolutionsPhys. Rev. Lett.20101050504032010PhRvL.105e0403R26730362086789810.1103/PhysRevLett.105.0504031:CAS:528:DC%2BC3cXpsFKgtLw%3D – reference: PachónLABrumerPIncoherent excitation of thermally equilibrated open quantum systemsPhys. Rev. A2013870221062013PhRvA..87b2106P10.1103/PhysRevA.87.0221061:CAS:528:DC%2BC3sXksVGrt7c%3D – reference: PachónLABrumerPDirect experimental determination of spectral densities of molecular complexesJ. Chem. Phys.20141411741022014JChPh.141q4102P2538149710.1063/1.49005121:CAS:528:DC%2BC2cXhvVGnsr7P – reference: CederbaumLSGindenspergerEBurghardtIShort-time dynamics through conical intersections in macrosystemsPhys. Rev. Lett.2005941130032005PhRvL..94k3003C1590385210.1103/PhysRevLett.94.1130031:CAS:528:DC%2BD2MXisl2ksrw%3D – reference: GiovannettiVLloydSMacconeLQuantum limits to dynamical evolutionPhys. Rev. A2003670521092003PhRvA..67e2109G10.1103/PhysRevA.67.0521091:CAS:528:DC%2BD3sXksVWjsbw%3D – reference: DeffnerSLutzEQuantum speed limit for non-Markovian dynamicsPhys. Rev. Lett.20131110104022013PhRvL.111a0402D2386298510.1103/PhysRevLett.111.0104021:CAS:528:DC%2BC3sXhtFOqsrnJ – reference: PachónLABrumerPPhysical basis for long-lived electronic coherence in photosynthetic light-harvesting systemsJ. Phys. Chem. Lett.20112272810.1021/jz201189p1:CAS:528:DC%2BC3MXhtlWjtrfI – reference: Forn-DiazPObservation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regimePhys. Rev. Lett.20101052370012010PhRvL.105w7001F1:STN:280:DC%2BC3M7htlOlsA%3D%3D2123149610.1103/PhysRevLett.105.237001 – reference: SchusterDIResolving photon number states in a superconducting circuitNature20074455152007Natur.445..515S1:CAS:528:DC%2BD2sXhtFWht7c%3D1726846410.1038/nature05461 – reference: DeffnerSLutzEEnergy-time uncertainty relation for driven quantum systemsJ. Phys. A: Math. Theor.20134633530230853871273.8100910.1088/1751-8113/46/33/335302 – reference: Pachón, L. A., Triana, J. F., Zueco, D. & Brumer, P. Uncertainty principle consequences at thermal equilibrium. arXiv: 1401.1418 (2014). – reference: HegerfeldtGCHigh-speed driving of a two-level systemPhys. Rev. A2014900321102014PhRvA..90c2110H10.1103/PhysRevA.90.0321101:CAS:528:DC%2BC2cXhvVClsrbJ – reference: LeeHChengYCFlemingGRCoherence dynamics in photosynthesis: Protein protection of excitonic coherenceScience200731614622007Sci...316.1462L1:CAS:528:DC%2BD2sXmtFSjsbs%3D1755658010.1126/science.1142188 – reference: LevitinLBToffoliTFundamental limit on the rate of quantum dynamics: the unified bound is tightPhys. Rev. Lett.20091031605022009PhRvL.103p0502L1990567910.1103/PhysRevLett.103.1605021:CAS:528:DC%2BD1MXht1OrtbfK – reference: Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 2008). – reference: AddisCBrebnerGHaikkaPManiscalcoSCoherence trapping and information backflow in dephasing qubitsPhys. Rev. A2014890241012014PhRvA..89b4101A10.1103/PhysRevA.89.0241011:CAS:528:DC%2BC2cXltFeksrY%3D – reference: GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861532014RvMP...86..153G10.1103/RevModPhys.86.153 – reference: ZhangYJZouXBXiaYJGuoGCDifferent entanglement dynamical behaviors due to initial system-environment correlationsPhys. Rev. A2010820221082010PhRvA..82b2108Z10.1103/PhysRevA.82.0221081:CAS:528:DC%2BC3cXhtFSrsrvI – reference: LiuBHExperimental control of the transition from Markovian to non-Markovian dynamics of open quantum systemsNature Phys.201179312011NatPh...7..931L1:CAS:528:DC%2BC3MXhtF2isLnK10.1038/nphys2085 – reference: TaddeiMMEscherBMDavidovichLde Matos FilhoRLQuantum speed limit for physical processesPhys. Rev. Lett.20131100504022013PhRvL.110e0402T1:STN:280:DC%2BC3szoslynsA%3D%3D2341400710.1103/PhysRevLett.110.050402 – reference: MandelstamLTammIThe uncertainty relation between energy and time in nonrelativistic quantum mechanicsJ. Phys. (USSR)19459249254153340060.45003 – reference: LaineEMPiiloJBreuerHPWitness for initial system-environment correlations in open-system dynamicsEurophys. Lett.201092600102010EL.....9260010L10.1209/0295-5075/92/600101:CAS:528:DC%2BC3MXktVGrtLw%3D – reference: BarreiroJTAn open-system quantum simulator with trapped ionsNature20114704862011Natur.470..486B1:CAS:528:DC%2BC3MXisVagur4%3D2135048110.1038/nature09801 – reference: ZhangYJHanWXiaYJCaoJPFanHQuantum speed limit for arbitrary initial statesSci. Rep.2014448901:CAS:528:DC%2BC2MXktlOgtLY%3D24809395401393710.1038/srep04890 – reference: GirolamiDObservable measure of quantum coherence in finite dimensional systemsPhys. Rev. Lett.20141131704012014PhRvL.113q0401G2537990310.1103/PhysRevLett.113.1704011:CAS:528:DC%2BC2cXitVSmtL7M – reference: DajkaJMierzejewskiMŁuczkaJFidelity of asymmetric dephasing channelsPhys. Rev. A2009 790121042009PhRvA..79a2104D10.1103/PhysRevA.79.0121041:CAS:528:DC%2BD1MXhtlGrurk%3D – reference: PachónLABrumerPMechanisms in environmentally assisted one-photon phase controlJ. Chem. Phys.20131391641232013JChPh.139p4123P2418202010.1063/1.48253581:CAS:528:DC%2BC3sXhslWmurrO – reference: BaumgratzTCramerMPlenioMBQuantifying coherencePhys. Rev. Lett.20141131404012014PhRvL.113n0401B1:STN:280:DC%2BC2M3hs1Sltw%3D%3D2532562010.1103/PhysRevLett.113.140401 – reference: ChaudhryAZGongJBRole of initial system-environment correlations: A master equation approachPhys. Rev. A2013880521072013PhRvA..88e2107C10.1103/PhysRevA.88.0521071:CAS:528:DC%2BC3sXhvFynurvE – reference: AnandanJAharonovYGeometry of quantum evolutionPhys. Rev. Lett.199065169717001990PhRvL..65.1697A10713481:STN:280:DC%2BC2sfoslOhtg%3D%3D100423400960.8152410.1103/PhysRevLett.65.1697 – reference: DajkaJŁuczkaJOrigination and survival of qudit-qudit entanglement in open systemsPhys. Rev. A2008770623032008PhRvA..77f2303D249141210.1103/PhysRevA.77.0623031:CAS:528:DC%2BD1cXot1Klt7s%3D – reference: TonyJGMemory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chainPhys. Rev. A2011830321032011PhRvA..83c2102T10.1103/PhysRevA.83.0321031:CAS:528:DC%2BC3MXkt1Ghs7Y%3D – reference: DijkstraAGTanimuraYNon-Markovian entanglement dynamics in the presence of system-bath coherencePhys. Rev. Lett.20101042504012010PhRvL.104y0401D2086735010.1103/PhysRevLett.104.2504011:CAS:528:DC%2BC3cXosV2ksLg%3D – reference: PfeiferPFröhlichJGeneralized time-energy uncertainty relations and bounds on lifetimes of resonans. Rev. Mod. Phys.1995677591995RvMP...67..759P1:CAS:528:DyaK28Xhslagt7Y%3D10.1103/RevModPhys.67.759 – reference: ZhangWMGeneral non-Markovian dynamics of open quantum systemsPhys. Rev. Lett.20121091704022012PhRvL.109q0402Z2321516610.1103/PhysRevLett.109.1704021:CAS:528:DC%2BC38Xhs12rsrzO – reference: EstradaAFPachónLAQuantum limit for driven linear non-Markovian open-quantum-systemsNew J. Phys.2015170330382015NJPh...17c3038E333533710.1088/1367-2630/17/3/0330381452.81144 – volume: 4 start-page: 021046 year: 2014 ident: BFsrep13359_CR60 publication-title: Phys. Rev. X – volume: 79 start-page: 012104 year: 2009 ident: BFsrep13359_CR47 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.012104 – volume: 110 start-page: 050402 year: 2013 ident: BFsrep13359_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.050402 – volume: 445 start-page: 515 year: 2007 ident: BFsrep13359_CR62 publication-title: Nature doi: 10.1038/nature05461 – ident: BFsrep13359_CR1 – volume: 14 start-page: 10094 year: 2012 ident: BFsrep13359_CR9 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp40815e – volume: 108 start-page: 160402 year: 2012 ident: BFsrep13359_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.160402 – volume: 470 start-page: 486 year: 2011 ident: BFsrep13359_CR58 publication-title: Nature doi: 10.1038/nature09801 – volume: 92 start-page: 60010 year: 2010 ident: BFsrep13359_CR18 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/92/60010 – volume: 109 start-page: 170402 year: 2012 ident: BFsrep13359_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.170402 – volume: 4 start-page: 4890 year: 2014 ident: BFsrep13359_CR44 publication-title: Sci. Rep. doi: 10.1038/srep04890 – volume: 83 start-page: 032103 year: 2011 ident: BFsrep13359_CR7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.032103 – volume: 82 start-page: 022108 year: 2010 ident: BFsrep13359_CR20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.022108 – volume: 110 start-page: 1203 year: 2013 ident: BFsrep13359_CR57 publication-title: PNAS doi: 10.1073/pnas.1211157110 – volume: 77 start-page: 062303 year: 2008 ident: BFsrep13359_CR46 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.062303 – ident: BFsrep13359_CR3 doi: 10.1093/acprof:oso/9780199213900.001.0001 – volume: 89 start-page: 024101 year: 2014 ident: BFsrep13359_CR12 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.024101 – volume: 82 start-page: 022107 year: 2010 ident: BFsrep13359_CR36 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.022107 – volume: 141 start-page: 174102 year: 2014 ident: BFsrep13359_CR48 publication-title: J. Chem. Phys. doi: 10.1063/1.4900512 – volume: 88 start-page: 052107 year: 2013 ident: BFsrep13359_CR24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.052107 – volume: 2 start-page: 2728 year: 2011 ident: BFsrep13359_CR56 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201189p – volume: 67 start-page: 052109 year: 2003 ident: BFsrep13359_CR35 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.67.052109 – volume: 102 start-page: 100402 year: 2009 ident: BFsrep13359_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.100402 – volume: 86 start-page: 016101 year: 2012 ident: BFsrep13359_CR37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.016101 – volume: 113 start-page: 140401 year: 2014 ident: BFsrep13359_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.140401 – volume: 113 start-page: 170401 year: 2014 ident: BFsrep13359_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.170401 – volume: 86 start-page: 153 year: 2014 ident: BFsrep13359_CR54 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.153 – volume: 15 start-page: 013017 year: 2013 ident: BFsrep13359_CR29 publication-title: New J. Phys. doi: 10.1088/1367-2630/15/1/013017 – volume: 111 start-page: 260501 year: 2013 ident: BFsrep13359_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.260501 – volume: 134 start-page: 101103 year: 2011 ident: BFsrep13359_CR6 publication-title: J. Chem. Phys. doi: 10.1063/1.3563617 – volume: 84 start-page: 032112 year: 2011 ident: BFsrep13359_CR13 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.032112 – volume: 113 start-page: 150402 year: 2014 ident: BFsrep13359_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.150402 – volume: 104 start-page: 250401 year: 2010 ident: BFsrep13359_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.250401 – volume: 84 start-page: 1242 year: 2004 ident: BFsrep13359_CR61 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1649803 – volume: 67 start-page: 759 year: 1995 ident: BFsrep13359_CR40 publication-title: s. Rev. Mod. Phys. doi: 10.1103/RevModPhys.67.759 – volume: 17 start-page: 033038 year: 2015 ident: BFsrep13359_CR55 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/3/033038 – ident: BFsrep13359_CR28 – volume: 70 start-page: 3365 year: 1993 ident: BFsrep13359_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.3365 – volume: 7 start-page: 931 year: 2011 ident: BFsrep13359_CR17 publication-title: Nature Phys. doi: 10.1038/nphys2085 – volume: 105 start-page: 237001 year: 2010 ident: BFsrep13359_CR59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.237001 – volume: 94 start-page: 113003 year: 2005 ident: BFsrep13359_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.113003 – ident: BFsrep13359_CR11 – volume: 163 start-page: 485 year: 2013 ident: BFsrep13359_CR26 publication-title: Faraday Discuss. doi: 10.1039/c3fd20144a – volume: 82 start-page: 012341 year: 2010 ident: BFsrep13359_CR14 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.012341 – volume: 76 start-page: 1037 year: 2004 ident: BFsrep13359_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.1037 – volume: 9 start-page: 113 year: 2013 ident: BFsrep13359_CR8 publication-title: Nat. Phys. doi: 10.1038/nphys2515 – volume: 105 start-page: 050403 year: 2010 ident: BFsrep13359_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.050403 – volume: 139 start-page: 164123 year: 2013 ident: BFsrep13359_CR27 publication-title: J. Chem. Phys. doi: 10.1063/1.4825358 – volume: 110 start-page: 050403 year: 2013 ident: BFsrep13359_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.050403 – volume: 65 start-page: 1697 year: 1990 ident: BFsrep13359_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.1697 – volume: 111 start-page: 010402 year: 2013 ident: BFsrep13359_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.010402 – volume: 87 start-page: 022106 year: 2013 ident: BFsrep13359_CR25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.022106 – volume: 8 start-page: 264 year: 2012 ident: BFsrep13359_CR53 publication-title: Nat. Phys. doi: 10.1038/nphys2275 – volume: 90 start-page: 032110 year: 2014 ident: BFsrep13359_CR31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.032110 – volume: 89 start-page: 012307 year: 2014 ident: BFsrep13359_CR45 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.012307 – volume: 316 start-page: 1462 year: 2007 ident: BFsrep13359_CR4 publication-title: Science doi: 10.1126/science.1142188 – volume: 9 start-page: 249 year: 1945 ident: BFsrep13359_CR32 publication-title: J. Phys. (USSR) – volume: 103 start-page: 210401 year: 2009 ident: BFsrep13359_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.210401 – volume: 83 start-page: 064102 year: 2011 ident: BFsrep13359_CR19 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.064102 – volume: 53 start-page: 4107 year: 1996 ident: BFsrep13359_CR49 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.4107 – volume: 103 start-page: 160502 year: 2009 ident: BFsrep13359_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.160502 – volume: 46 start-page: 335302 year: 2013 ident: BFsrep13359_CR38 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/46/33/335302 – reference: 10053850 - Phys Rev Lett. 1993 May 31;70(22):3365-3368 – reference: 24182020 - J Chem Phys. 2013 Oct 28;139(16):164123 – reference: 23267114 - Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1203-8 – reference: 24020218 - Faraday Discuss. 2013;163:485-95; discussion 513-43 – reference: 21405149 - J Chem Phys. 2011 Mar 14;134(10):101103 – reference: 20867350 - Phys Rev Lett. 2010 Jun 25;104(25):250401 – reference: 23414008 - Phys Rev Lett. 2013 Feb 1;110(5):050403 – reference: 23862985 - Phys Rev Lett. 2013 Jul 5;111(1):010402 – reference: 22680702 - Phys Rev Lett. 2012 Apr 20;108(16):160402 – reference: 23215166 - Phys Rev Lett. 2012 Oct 26;109(17):170402 – reference: 21231496 - Phys Rev Lett. 2010 Dec 3;105(23):237001 – reference: 17268464 - Nature. 2007 Feb 1;445(7127):515-8 – reference: 24483786 - Phys Rev Lett. 2013 Dec 27;111(26):260501 – reference: 22735237 - Phys Chem Chem Phys. 2012 Aug 7;14(29):10094-108 – reference: 25381497 - J Chem Phys. 2014 Nov 7;141(17):174102 – reference: 24809395 - Sci Rep. 2014 May 08;4:4890 – reference: 9964724 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):4107-4121 – reference: 19905679 - Phys Rev Lett. 2009 Oct 16;103(16):160502 – reference: 25379903 - Phys Rev Lett. 2014 Oct 24;113(17):170401 – reference: 19392093 - Phys Rev Lett. 2009 Mar 13;102(10):100402 – reference: 21350481 - Nature. 2011 Feb 24;470(7335):486-91 – reference: 23414007 - Phys Rev Lett. 2013 Feb 1;110(5):050402 – reference: 15903852 - Phys Rev Lett. 2005 Mar 25;94(11):113003 – reference: 20867898 - Phys Rev Lett. 2010 Jul 30;105(5):050403 – reference: 25375693 - Phys Rev Lett. 2014 Oct 10;113(15):150402 – reference: 20366019 - Phys Rev Lett. 2009 Nov 20;103(21):210401 – reference: 10042340 - Phys Rev Lett. 1990 Oct 1;65(14):1697-1700 – reference: 25325620 - Phys Rev Lett. 2014 Oct 3;113(14):140401 – reference: 17556580 - Science. 2007 Jun 8;316(5830):1462-5 |
SSID | ssj0000529419 |
Score | 2.4292746 |
Snippet | We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13359 |
SubjectTerms | 639/766/483/481 639/766/483/640 Evolution Humanities and Social Sciences Laboratories multidisciplinary Open systems Physics Science Trapping |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBddS2EvY23XLVtbsnUPfTGN7dhOnsYoPY5C93SDewuxz24PRnLbXR_631fK1-5jDEIIWImN5UiyJP8E8FVyYZ2VJXNBlwylX86ymQjMSBNQUqqZzuns8P0PPf6Z3k3VtHO4Lbu0yl4mNoJ6VjvykV_zjI54KjSHvy1-M6oaRdHVroTGKzgg6DJK6TJTM_hYKIqV8rwHFJLZNaqdBe7KCJl0XQ3t2Ja7KZJbcdJG_YzewpvOboy_t4w-gj1fHcNhW0nyGZ-aTE63PAGC2fZxHeI5pQXhKy1WM7No6sWOanG02W8xXq5-bE_7xdg7ATU8vIPJ6HZyM2ZdjQTmVJKumPDGcS2CTLzkWpVW4g8nuA7Coea3VFkn0QHVPrLKlCYrcX8R0CwJVqP-8vIU9qu68h8gVi6jFBKvElemIedWSG9SizebudyWEVz1M1a4Dj-cylj8Kpo4tsyKYXIj-DKQLlrQjH8RnfXTXnT_zbL4y-UIPg_NuOIpjFFWvn5CGoNmDqHK4Cfet1waehEaVTLXSQRmg38DAaFpb7ZU88cGVTvFvRvPdASXPafXhrU9-I__H_wneI2GlSLfs1BnsL_68-TP0XhZ2Ytmhb4ACKjxLA priority: 102 providerName: ProQuest – databaseName: Springer Nature Link dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgCIkL4k1hoPI4cKlokiZpj2himpDgNKTdqiZL2CTUTmw78O9x-oIxDkhVL3EbK05iO3Y-A9wyQpVWLAu0FVmAu18SxGNqA8mkxZ2Sj0Xi7g4_v4jBa_Q04qMaLHpep1VWkJblNt1kh92jvpihO8WTTdhyiO1uMvdErz1OcQGriCQNdhCLv79Y1ThrZuR6NuSvkGipafp7sFubiP5DxdQ-bJj8ALaropGfh-BwtI1fWH_q8n6QsAJjDhTacr52xTaq9DYfH11Mqut8PvbpkBjejmDYfxz2BkFdBCHQPIwWATVSE0EtCw0jgmeK4YqiRFiqUbUrVzonFBb1OspCZjLO0IGwaHdYJVBBGXYMnbzIzSn4XMcuR8TwUGeRTYiizMhI4UvFOlGZB3fNOKW6Bgh3dSre0zJQzeK0HVIPrlvSWYWK8RdRtxnstF4Y85TE7qYuR6_Gg6u2Gae0i1NkuSmWSCPRjnGwMfiLk0o2bS9UoM4lIvRArkitJXBw2ast-XRSwmZH6JyRWHhw08j3B1u_mT_7F9U57KABxd0ZM-Vd6Cw-luYCjZSFuiyn5xfx-ekd priority: 102 providerName: Springer Nature |
Title | Role of initial system-bath correlation on coherence trapping |
URI | https://link.springer.com/article/10.1038/srep13359 https://www.ncbi.nlm.nih.gov/pubmed/26303160 https://www.proquest.com/docview/1899725182 https://www.proquest.com/docview/1707559969 https://pubmed.ncbi.nlm.nih.gov/PMC4548186 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bS8MwFD54QfBFvFsvo14efKmuaZO0DyJzKDJQRDfYW2myxAnSzbmB-_eeNG2ZU6G00Jw2aU6T851cvgNwFvhESBGkntQs9bD3i72oR7THA66xp6Q9Fpu9ww-P7L4Ttrq0uwBljM2iAj__dO1MPKnO6P3i62N6jQ3-ym4Zjy7RlgzR1aLxIiyjQeKmfT4UKN9SfJM49OOSV2j2CcMFzLAX93OKyhnD9Att_l40OTdzmhuku3VYK5Ck27Cq34AFlW3Cio0tOd0CQ7et3IF238zyIBS0nM2eQMjnShOTw66Cc_GQg77d9edinoaw4XUb2ne37ea9V8RK8CSth2OPKC59RnRQV_gxNBUBNjziM00kIgBhIuzUmUbzjyrjKY9S9DM0whMtGNoxFezAUjbI1B64VEZmKYmidZmGOvYFCRQPBZ5EJGOROnBe1lMiCx5xE87iPcnns4MoqWrXgZNKdGjJM_4SOiwrOynVn_iR2dBL0flx4LhKxj_fTGekmRpMUIYj3DHsMviKXaubKpdSqQ7wH1qrBAyr9s-U7K2fs2uH6MP5EXPgtNTvTLHmC7__b84HsIrYiprhZ0IPYWk8mqgjxC9jUYNF3uU1WG40Wi8tvN7cPj49490ma9byMYFa_v9-Ayfi9ck |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Za9wwEB6SDSV9KT1TN0nrpi30RcSSLNl-KCXNweZaStlC3oyllZJAsbfdDSU_Kv-xM76ao_QtYIzBsi1Lo5lPmtE3AO8lF8YaWTDrdcFQ-2UsnQjPEpl41JRqojPaO3w80sPv8cGJOlmAq24vDIVVdjqxVtSTytIa-SZPaYunQjj8efqTUdYo8q52KTQasTh0l79xyjb7tL-D_ftBiL3d8faQtVkFmFVRPGfCJZZr4WXkJNeqMBJFVHDthUVbaSgXTaQ9Gkr8uaRI0gIRuUdD7o1Gje8kvnYRlmKJM5kBLH3ZHX391i_qkNss5lnHYCTTTbRzU5wGEhXqdbt3B8zejcm85Zit7d3eY3jUAtVwq5GsJ7DgyqfwoEldeYlXdeionT0D4vV2YeXDc4pDwkcacmhmEFuGlpJ_NOF2IR62Omu2F4b4dWKGOH0O4_tovhcwKKvSvYRQ2ZRiVpyKbBH7jBshXRIbPJnUZqYI4GPXYrltCcspb8aPvHacyzTvGzeAjb7otGHp-Fehta7Z83agzvK_YhXA2_42DjHymxSlqy6wTIK4imhs8BUrTS_1XxEaMQDXUQDJjf7rCxB998075flZTeMd42SRpzqAd11PX6vW7cq_-n_l38DycHx8lB_tjw5X4SGiOkUL30KtwWD-68KtI3Kam9etvIaQ3_MI-QP9cyzm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAvCAqU0AIpD4mLtbEd28kBoapl1RcVhyLtLYq9Nq1UJQu7FepP4991Ji_6QNwqrVYrxZs49jw-e8bfALyXXFhnZclc0CVD65ezbCoCM9IEtJRqqnM6O_z1SO9-T_cnarIEf_qzMJRW2dvExlBPa0d75COe0RFPhXB4FLq0iG8748-zn4wqSFGktS-n0YrIgb_4jcu3-ae9HZzrD0KMvxxv77KuwgBzKkkXTHjjuBZBJl5yrUorUVwF10E49JuW6tIkOqDTxBc1pclKROcBnXqwGq2_l3jbe3DfSMVJxczEDNs7FEBLed5zGclshB5vhgtCIkW96gFvwdrb2Zk3QrSN5xs_hkcdZI23Whl7Aku-WoUHbRHLC_zVJJG6-VMghm8f1yE-pYwk_EtLE80soszYURmQNvEuxo-rT9qDhjE-nTgifjyD47sYvOewXNWVfwGxchllr3iVuDINObdCepNa_LKZy20Zwcd-xArXUZdTBY2zogmhy6wYBjeCt0PTWcvX8a9GG_2wF53Kzou_AhbB5nAZlY0iKGXl63NsYxBhEaEN3mKtnaXhKUIjGuA6icBcm7-hARF5X79SnZ40hN4pLht5piN418_0lW7d7PzL_3f-DTxEvSgO944O1mEF4Z2iHXChNmB58evcv0IItbCvG2GNobhj5bgEocwvtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+initial+system-bath+correlation+on+coherence+trapping&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Ying-Jie&rft.au=Han%2C+Wei&rft.au=Xia%2C+Yun-Jie&rft.au=Yu%2C+Yan-Mei&rft.date=2015-08-25&rft.eissn=2045-2322&rft.volume=5&rft.spage=13359&rft_id=info:doi/10.1038%2Fsrep13359&rft_id=info%3Apmid%2F26303160&rft.externalDocID=26303160 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |