Role of initial system-bath correlation on coherence trapping
We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than...
Saved in:
Published in | Scientific reports Vol. 5; no. 1; p. 13359 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.08.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation can lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep13359 |