Pleiotropic Effects of Myocardial MMP-9 Inhibition to Prevent Ventricular Arrhythmia
Observational studies have established a strong association between matrix metalloproteinase-9 (MMP-9) and ventricular arrhythmia. However, whether MMP-9 has a causal link to ventricular arrhythmia, as well as the underlying mechanism, remains unclear. Here, we investigated the mechanistic involveme...
Saved in:
Published in | Scientific reports Vol. 6; no. 1; p. 38894 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.12.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Observational studies have established a strong association between matrix metalloproteinase-9 (MMP-9) and ventricular arrhythmia. However, whether MMP-9 has a causal link to ventricular arrhythmia, as well as the underlying mechanism, remains unclear. Here, we investigated the mechanistic involvement of myocardial MMP-9 in the pathophysiology of ventricular arrhythmia. Increased levels of myocardial MMP-9 are linked to ventricular arrhythmia attacks after angiotensin II (Ang II) treatment. MMP-9-deficient mice were protected from ventricular arrhythmia. Increased expressions of protein kinase A (PKA) and ryanodine receptor phosphorylation at serine 2808 (pS2808) were correlated with inducible ventricular arrhythmia. MMP-9 deficiency consistently prevented PKA and pS2808 increases after Ang II treatment and reduced ventricular arrhythmia. Calcium dynamics were examined via confocal imaging in isolated murine cardiomyocytes. MMP-9 inhibition prevents calcium leakage from the sarcoplasmic reticulum and reduces arrhythmia-like irregular calcium transients via protein kinase A and ryanodine receptor phosphorylation. Human induced pluripotent stem cell-derived cardiomyocytes similarly show that MMP-9 inhibition prevents abnormal calcium leakage. Myocardial MMP-9 inhibition prevents ventricular arrhythmia through pleiotropic effects, including the modulation of calcium homeostasis and reduced calcium leakage. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep38894 |