A reevaluation of the role of the ASIL trihelix transcription factors as repressors of the seed maturation program

Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the fact...

Full description

Saved in:
Bibliographic Details
Published inPlant direct Vol. 5; no. 10; pp. e345 - n/a
Main Authors Ruiz, Kevin A., Pelletier, Julie M., Wang, Yuchi, Feng, Min Jun, Behr, Jacqueline S., Ðào, Thái Q., Li, Baohua, Kliebenstein, Daniel, Harada, John J., Jenik, Pablo D.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.10.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the factors responsible for this regulation during early embryogenesis, and only a couple of transcription factors have been characterized as repressors during the postgerminative phase. Arabidopsis 6b‐INTERACTING PROTEIN‐LIKE1 (ASIL1), a trihelix transcription factor, has been proposed to repress maturation both embryonically and postembryonically. Preliminary data also suggested that its closest paralog, ASIL2, might play a role as well. We used a transcriptomic approach, coupled with phenotypical observations, to test the hypothesis that ASIL1 and ASIL2 redundantly turn off maturation during both phases of growth. Our results indicate that, contrary to what was previously published, neither of the ASIL genes plays a role in the regulation of maturation, at any point during plant development. Analyses of gene ontology (GO)‐enriched terms and published transcriptomic datasets suggest that these genes might be involved in responses during the vegetative phase to certain biotic and abiotic stresses.
AbstractList Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the factors responsible for this regulation during early embryogenesis, and only a couple of transcription factors have been characterized as repressors during the postgerminative phase. 6b-INTERACTING PROTEIN-LIKE1 (ASIL1), a trihelix transcription factor, has been proposed to repress maturation both embryonically and postembryonically. Preliminary data also suggested that its closest paralog, ASIL2, might play a role as well. We used a transcriptomic approach, coupled with phenotypical observations, to test the hypothesis that ASIL1 and ASIL2 redundantly turn off maturation during both phases of growth. Our results indicate that, contrary to what was previously published, neither of the genes plays a role in the regulation of maturation, at any point during plant development. Analyses of gene ontology (GO)-enriched terms and published transcriptomic datasets suggest that these genes might be involved in responses during the vegetative phase to certain biotic and abiotic stresses.
Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the factors responsible for this regulation during early embryogenesis, and only a couple of transcription factors have been characterized as repressors during the postgerminative phase. Arabidopsis 6b‐INTERACTING PROTEIN‐LIKE1 (ASIL1), a trihelix transcription factor, has been proposed to repress maturation both embryonically and postembryonically. Preliminary data also suggested that its closest paralog, ASIL2, might play a role as well. We used a transcriptomic approach, coupled with phenotypical observations, to test the hypothesis that ASIL1 and ASIL2 redundantly turn off maturation during both phases of growth. Our results indicate that, contrary to what was previously published, neither of the ASIL genes plays a role in the regulation of maturation, at any point during plant development. Analyses of gene ontology (GO)‐enriched terms and published transcriptomic datasets suggest that these genes might be involved in responses during the vegetative phase to certain biotic and abiotic stresses.
Abstract Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the factors responsible for this regulation during early embryogenesis, and only a couple of transcription factors have been characterized as repressors during the postgerminative phase. Arabidopsis 6b‐INTERACTING PROTEIN‐LIKE1 (ASIL1), a trihelix transcription factor, has been proposed to repress maturation both embryonically and postembryonically. Preliminary data also suggested that its closest paralog, ASIL2, might play a role as well. We used a transcriptomic approach, coupled with phenotypical observations, to test the hypothesis that ASIL1 and ASIL2 redundantly turn off maturation during both phases of growth. Our results indicate that, contrary to what was previously published, neither of the ASIL genes plays a role in the regulation of maturation, at any point during plant development. Analyses of gene ontology (GO)‐enriched terms and published transcriptomic datasets suggest that these genes might be involved in responses during the vegetative phase to certain biotic and abiotic stresses.
Abstract Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the factors responsible for this regulation during early embryogenesis, and only a couple of transcription factors have been characterized as repressors during the postgerminative phase. Arabidopsis 6b‐INTERACTING PROTEIN‐LIKE1 (ASIL1), a trihelix transcription factor, has been proposed to repress maturation both embryonically and postembryonically. Preliminary data also suggested that its closest paralog, ASIL2, might play a role as well. We used a transcriptomic approach, coupled with phenotypical observations, to test the hypothesis that ASIL1 and ASIL2 redundantly turn off maturation during both phases of growth. Our results indicate that, contrary to what was previously published, neither of the ASIL genes plays a role in the regulation of maturation, at any point during plant development. Analyses of gene ontology (GO)‐enriched terms and published transcriptomic datasets suggest that these genes might be involved in responses during the vegetative phase to certain biotic and abiotic stresses.
Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo maturation program midway through seed development and its repression during the vegetative phase of plant growth. Very little is known about the factors responsible for this regulation during early embryogenesis, and only a couple of transcription factors have been characterized as repressors during the postgerminative phase. Arabidopsis 6b‐INTERACTING PROTEIN‐LIKE1 (ASIL1), a trihelix transcription factor, has been proposed to repress maturation both embryonically and postembryonically. Preliminary data also suggested that its closest paralog, ASIL2, might play a role as well. We used a transcriptomic approach, coupled with phenotypical observations, to test the hypothesis that ASIL1 and ASIL2 redundantly turn off maturation during both phases of growth. Our results indicate that, contrary to what was previously published, neither of the ASIL genes plays a role in the regulation of maturation, at any point during plant development. Analyses of gene ontology (GO)‐enriched terms and published transcriptomic datasets suggest that these genes might be involved in responses during the vegetative phase to certain biotic and abiotic stresses.
Author Pelletier, Julie M.
Li, Baohua
Ruiz, Kevin A.
Behr, Jacqueline S.
Wang, Yuchi
Feng, Min Jun
Ðào, Thái Q.
Jenik, Pablo D.
Kliebenstein, Daniel
Harada, John J.
AuthorAffiliation 6 Present address: Hoboken University Medical Center Hoboken NJ USA
1 Department of Biology Franklin & Marshall College Lancaster PA USA
5 Present address: Medical University of South Carolina Charleston SC USA
2 Department of Plant Biology, College of Biological Sciences University of California Davis CA USA
4 Present address: Chimera (Shanghai) Biotec Ltd. Shanghai City China
3 Department of Plant Sciences, College of Agricultural and Environmental Sciences University of California Davis CA USA
8 Present address: College of Horticulture Northwest A&F University Yangling Shaanxi China
7 Present address: Department of Botany and Plant Biology, College of Agricultural Sciences Oregon State University Corvallis OR USA
AuthorAffiliation_xml – name: 8 Present address: College of Horticulture Northwest A&F University Yangling Shaanxi China
– name: 2 Department of Plant Biology, College of Biological Sciences University of California Davis CA USA
– name: 6 Present address: Hoboken University Medical Center Hoboken NJ USA
– name: 3 Department of Plant Sciences, College of Agricultural and Environmental Sciences University of California Davis CA USA
– name: 5 Present address: Medical University of South Carolina Charleston SC USA
– name: 1 Department of Biology Franklin & Marshall College Lancaster PA USA
– name: 7 Present address: Department of Botany and Plant Biology, College of Agricultural Sciences Oregon State University Corvallis OR USA
– name: 4 Present address: Chimera (Shanghai) Biotec Ltd. Shanghai City China
Author_xml – sequence: 1
  givenname: Kevin A.
  orcidid: 0000-0002-6405-832X
  surname: Ruiz
  fullname: Ruiz, Kevin A.
  organization: Franklin & Marshall College
– sequence: 2
  givenname: Julie M.
  orcidid: 0000-0003-0461-8126
  surname: Pelletier
  fullname: Pelletier, Julie M.
  organization: University of California
– sequence: 3
  givenname: Yuchi
  orcidid: 0000-0002-0019-1287
  surname: Wang
  fullname: Wang, Yuchi
  organization: Franklin & Marshall College
– sequence: 4
  givenname: Min Jun
  orcidid: 0000-0001-8195-4313
  surname: Feng
  fullname: Feng, Min Jun
  organization: Franklin & Marshall College
– sequence: 5
  givenname: Jacqueline S.
  orcidid: 0000-0001-7530-3389
  surname: Behr
  fullname: Behr, Jacqueline S.
  organization: Franklin & Marshall College
– sequence: 6
  givenname: Thái Q.
  orcidid: 0000-0002-2510-512X
  surname: Ðào
  fullname: Ðào, Thái Q.
  organization: Franklin & Marshall College
– sequence: 7
  givenname: Baohua
  orcidid: 0000-0001-7235-0470
  surname: Li
  fullname: Li, Baohua
  organization: University of California
– sequence: 8
  givenname: Daniel
  orcidid: 0000-0001-5759-3175
  surname: Kliebenstein
  fullname: Kliebenstein, Daniel
  organization: University of California
– sequence: 9
  givenname: John J.
  orcidid: 0000-0003-1438-7296
  surname: Harada
  fullname: Harada, John J.
  organization: University of California
– sequence: 10
  givenname: Pablo D.
  orcidid: 0000-0002-8804-4942
  surname: Jenik
  fullname: Jenik, Pablo D.
  email: pjenik@fanndm.edu
  organization: Franklin & Marshall College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34622120$$D View this record in MEDLINE/PubMed
BookMark eNp1kl1rFDEUhoNUbK0Ff4EMeOPN1Ey-JrkRlvq1sKCgXofM5MxulsxkTGaq_fdmutvaCl7lJHnycHJ4n6OTIQyA0MsKX1YYk7ejt_SSMv4EnRFW85Ixzk8e1KfoIqU9zmhVCyz5M3RKmSCkIvgMxVURAa6Nn83kwlCErph2UMTg4a5efVtviim6HXj3OxdmSG104y3emXYKMRUmZc0YIaVld3yYAGzRm2mOB_cYwzaa_gV62hmf4OK4nqMfHz98v_pcbr58Wl-tNmXLMeOlpF3NO0VAQd2QWlaCiaatZc2lqjMhWqq4EdKopuOqWbCOSGoNVFgJRug5Wh-8Npi9HqPrTbzRwTh9exDiVps4udaDVhZq1TArG8OYoqLBHIw1wgDBlnGbXe8OrnFuerAtDHkO_pH08c3gdnobrrVkkmKhsuDNURDDzxnSpHuXWvDeDBDmpAmXGcv_Wvp-_Q-6D3Mc8qgWKk-BSYH_CtsYUorQ3TdTYb3kQi-50DkXGX31sPl78C4FGSgPwC_n4ea_Iv11854uwj-oLMOq
CitedBy_id crossref_primary_10_3389_fpls_2024_1386041
crossref_primary_10_1007_s11033_023_08640_w
crossref_primary_10_1007_s10722_023_01657_x
Cites_doi 10.1111/j.1365-313X.2007.03052.x
10.3389/fpls.2012.00202
10.1046/j.1365-313x.1998.00343.x
10.1016/S0014-5793(04)00222-4
10.1126/science.250.4983.959
10.21162/PAKJAS/16.3347
10.1007/s00497-018-00357-2
10.1073/pnas.0607940104
10.1387/ijdb.052046jc
10.1093/bioinformatics/btt053
10.1093/pcp/pcn116
10.1093/plphys/kiab089
10.1111/j.1365-313X.2009.03817.x
10.1104/pp.113.220988
10.1093/pcp/pcw095
10.1111/j.1365-313X.2010.04307.x
10.4161/psb.18893
10.1105/tpc.105.039925
10.1126/science.1088305
10.1146/annurev.arplant.57.032905.105228
10.3109/10520299109110562
10.1016/j.pbi.2005.03.002
10.1105/tpc.6.12.1805
10.1371/journal.pgen.1002014
10.1371/journal.pgen.1004091
10.1104/pp.106.092320
10.1101/gad.1986710
10.1371/journal.pgen.1005771
10.1111/tpj.14324
10.1105/tpc.108.061309
10.1016/j.cub.2013.05.050
10.1111/pbi.12315
10.1101/gad.9.14.1797
10.1111/nph.16071
10.1104/pp.126.2.811
10.2144/03352bm06
10.1104/pp.113.223511
10.1105/tpc.108.062968
10.1016/j.tplants.2011.12.002
10.1263/jbb.104.34
10.1371/journal.pone.0136591
10.1105/tpc.17.00655
10.1371/journal.pgen.1002512
10.1007/s00438-009-0507-x
10.1038/cr.2008.276
10.1104/pp.106.2.447
10.1007/s00299-008-0644-4
10.1199/tab.0113
10.1105/tpc.000869
10.1104/pp.107.111674
10.1038/s41477-019-0402-3
10.1104/pp.112.194878
10.1371/journal.pone.0006898
10.4161/psb.6.12.18709
10.1093/bioinformatics/btp616
10.1371/journal.pone.0000718
10.1111/tpj.13106
10.1126/science.aaa8332
10.1093/jxb/err383
10.1093/mp/ssp027
10.1007/s00497-018-0337-2
10.1104/pp.103.030148
10.1126/science.1153795
10.1038/ncomms8243
10.1104/pp.108.121996
10.3389/fpls.2017.00044
10.1105/tpc.109.068890
10.1128/MCB.15.2.1014
10.1002/prot.22827
10.1093/nar/gkq310
10.1242/dev.00814
10.1105/tpc.112.096313
10.1073/pnas.1222061110
10.1104/pp.110.171355
ContentType Journal Article
Copyright 2021 The Authors. published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
2021 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2021 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1002/pld3.345
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
Biological Science Database
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
CrossRef

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Ruiz et al
EISSN 2475-4455
EndPage n/a
ExternalDocumentID oai_doaj_org_article_9de79b4d8ba44936b05eada6ae20d45d
10_1002_pld3_345
34622120
PLD3345
Genre article
Journal Article
GrantInformation_xml – fundername: NIH Shared Instrumentation Grant
  funderid: 1S10OD010786‐01
– fundername: Franklin & Marshall College Open Access Publishing Fund
– fundername: National Institute of General Medical Sciences
  funderid: 1R15GM113186‐01
– fundername: ;
  grantid: 1R15GM113186‐01
– fundername: NIH Shared Instrumentation Grant
  grantid: 1S10OD010786‐01
GroupedDBID 0R~
1OC
24P
8FE
8FH
AAHHS
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
EBS
ECGQY
EJD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IGS
LK8
M7P
M~E
O9-
OK1
PIMPY
PROAC
RPM
WIN
ITC
NPM
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c5045-83f75f92e9e7b2781646bc78758975046c395a68a9bf59be9e7f283dae1096423
IEDL.DBID RPM
ISSN 2475-4455
IngestDate Tue Oct 22 14:47:58 EDT 2024
Tue Sep 17 21:21:00 EDT 2024
Sat Oct 26 05:49:37 EDT 2024
Sat Nov 09 14:37:02 EST 2024
Thu Sep 26 16:31:56 EDT 2024
Sat Nov 02 12:31:14 EDT 2024
Sat Aug 24 00:59:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords embryo
trihelix factor
Arabidopsis
embryonic maturation program
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5045-83f75f92e9e7b2781646bc78758975046c395a68a9bf59be9e7f283dae1096423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8195-4313
0000-0001-5759-3175
0000-0001-7235-0470
0000-0002-6405-832X
0000-0003-1438-7296
0000-0002-8804-4942
0000-0003-0461-8126
0000-0002-2510-512X
0000-0002-0019-1287
0000-0001-7530-3389
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483069/
PMID 34622120
PQID 2586464860
PQPubID 4370295
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_9de79b4d8ba44936b05eada6ae20d45d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8483069
proquest_miscellaneous_2580697502
proquest_journals_2586464860
crossref_primary_10_1002_pld3_345
pubmed_primary_34622120
wiley_primary_10_1002_pld3_345_PLD3345
PublicationCentury 2000
PublicationDate October 2021
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Plant direct
PublicationTitleAlternate Plant Direct
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2004; 562
2013; 29
2007; 104
2002; 14
2017; 8
2013; 25
2015; 347
2019; 99
2013; 23
2007; 143
2013; 163
2008; 6
2012; 17
2008; 147
2008; 146
2011; 155
1998; 16
2004; 134
2009; 58
2010; 64
1994; 106
2010; 26
2010; 24
2016; 85
2018; 30
2013; 110
2007; 2
2009; 19
2018; 31
2014; 10
2012; 63
1990; 250
2010; 78
2015; 13
1995; 9
2010; 38
2015; 6
2009; 21
2019; 5
2006; 57
1995; 15
2019; 32
2015; 10
2020; 226
2003; 35
2016; 53
2006; 18
1994
2021; 186
2010; 283
2007; 50
2008; 320
2005; 49
2011; 6
2001; 126
2011; 7
2016; 57
2016; 12
2003; 130
2009; 28
2012; 3
1991; 66
2005; 8
2008; 49
2015
2009; 4
2003; 302
2012; 7
2012; 159
2009; 2
2012; 8
1994; 6
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Hanson T. (e_1_2_9_23_1) 2015
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_47_1
Jürgens G. (e_1_2_9_28_1) 1994
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 21
  start-page: 1747
  issue: 6
  year: 2009
  end-page: 1761
  article-title: A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation
  publication-title: The Plant Cell
– volume: 3
  start-page: 202
  year: 2012
  article-title: A high‐throughput method for Illumina RNA‐Seq library preparation
  publication-title: Frontiers in Plant Sciences
– volume: 104
  start-page: 2543
  issue: 7
  year: 2007
  end-page: 2547
  article-title: Two B3 domain transcriptional repressors prevent sugar‐inducible expression of seed maturation genes in Arabidopsis seedlings
  publication-title: Proceedings of the National Academy of Sciences
– volume: 32
  start-page: 77
  year: 2019
  end-page: 91
  article-title: The embryonic transcriptome of
  publication-title: Plant Reproduction
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  article-title: edgeR: A bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformaitcs
– volume: 226
  start-page: 306
  year: 2020
  end-page: 325
  article-title: Genome‐wide identification of ( ) genes required for growth and development in Arabidopsis
  publication-title: New Phytologist
– volume: 66
  start-page: 111
  year: 1991
  end-page: 116
  article-title: Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol‐glycerol
  publication-title: Biotechnic and Histochemistry
– volume: 5
  start-page: 424
  year: 2019
  end-page: 435
  article-title: Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in
  publication-title: Nature Plants
– volume: 143
  start-page: 902
  issue: 2
  year: 2007
  end-page: 911
  article-title: Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3‐LIKE B3 genes
  publication-title: Plant Physiology
– volume: 9
  start-page: 1797
  year: 1995
  end-page: 1810
  article-title: Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements
  publication-title: Genes and Development
– volume: 347
  start-page: 1066
  year: 2015
  end-page: 1067
  article-title: Statistics requantitates the central dogma
  publication-title: Science
– volume: 283
  start-page: 157
  year: 2010
  end-page: 169
  article-title: Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses
  publication-title: Molecular Genetics and Genomics
– volume: 16
  start-page: 735
  issue: 6
  year: 1998
  end-page: 743
  article-title: Floral dip: A simplified method for ‐mediated transformation of
  publication-title: The Plant Journal
– volume: 35
  start-page: 278
  issue: 2
  year: 2003
  end-page: 282
  article-title: Rapid isolation of embryos
  publication-title: BioTechniques
– volume: 13
  start-page: 811
  year: 2015
  end-page: 820
  article-title: Chromodomain, helicase and DNA‐binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes
  publication-title: Plant Biotechnology Journal
– volume: 134
  start-page: 995
  year: 2004
  end-page: 1005
  article-title: acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin‐dependent responses
  publication-title: Plant Physiology
– volume: 49
  start-page: 645
  year: 2005
  end-page: 651
  article-title: Seed maturation: Developing an intrusive phase to accomplish a quiescent state
  publication-title: International Journal of Developmental Biolology
– volume: 64
  start-page: 100
  year: 2010
  end-page: 113
  article-title: The C‐terminal domain of FUSCA3 negatively regulates mRNA and protein levels, and mediates sensitivity to the hormones abscisic acid and gibberellic acid in Arabidopsis
  publication-title: The Plant Journal
– volume: 21
  start-page: 2563
  issue: 9
  year: 2009
  end-page: 2577
  article-title: Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS‐Like15
  publication-title: The Plant Cell
– volume: 163
  start-page: 1293
  year: 2013
  end-page: 1305
  article-title: Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression
  publication-title: Plant Physiology
– volume: 23
  start-page: 1324
  issue: 14
  year: 2013
  end-page: 1329
  article-title: VAL‐ and AtBMI1‐mediated H2Aub initiate the switch from embryonic to postgerminative growth in
  publication-title: Current Biology
– volume: 58
  start-page: 843
  year: 2009
  end-page: 856
  article-title: Arabidopsis NF‐YB subunits LEC1 and LEC1‐LIKE activate transcription by interacting with seed‐specific ABRE‐binding factors
  publication-title: The Plant Journal
– volume: 17
  start-page: 163
  issue: 3
  year: 2012
  end-page: 171
  article-title: The trihelix family of transcription factors—Light, stress and development
  publication-title: Trends in Plant Science
– volume: 14
  start-page: 1391
  year: 2002
  end-page: 1403
  article-title: The homologous ABI5 and EEL transcription factors function antagonistically to fine‐tune gene expression during late embryogenesis
  publication-title: The Plant Cell
– volume: 10
  issue: 8
  year: 2015
  article-title: Clustering and differential alignment algorithm: Identification of early stage regulators in the iron deficiency response
  publication-title: PLoS ONE
– volume: 57
  start-page: 303
  year: 2006
  end-page: 333
  article-title: Biology and biochemistry of glucosinolates
  publication-title: Annual Review of Plant Biology
– volume: 24
  start-page: 2678
  year: 2010
  end-page: 2692
  article-title: MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis
  publication-title: Genes & Development
– volume: 2
  start-page: 610
  year: 2009
  end-page: 627
  article-title: An epigenetic perspective on developmental regulation of seed genes
  publication-title: Molecular Plant
– volume: 8
  year: 2017
  article-title: , a trihelix family gene, mediates abiotic stress tolerance and ABA signaling in
  publication-title: Frontiers in Plant Science
– volume: 106
  start-page: 447
  year: 1994
  end-page: 458
  article-title: Seed‐specific gene activation mediated by the Cre//ox site‐specific recombination system
  publication-title: Plant Physiology
– volume: 29
  start-page: 717
  year: 2013
  end-page: 724
  article-title: Comparative study of RNA‐seq‐ and microarray‐derived coexpression networks in
  publication-title: Bioinformatics
– volume: 10
  issue: 1
  year: 2014
  article-title: AL PHD‐PRC1 complexes promote seed germination through H3K4me3‐to‐H3K27me3 chromatin state switch in repression of seed developmental genes
  publication-title: PLoS Genetics
– volume: 12
  issue: 1
  year: 2016
  article-title: Arabidopsis flower and embryo developmental genes are repressed in seedlings by different combinations of Polycomb Group proteins in association with distinct sets of cis‐regulatory elements
  publication-title: PLoS Genetics
– volume: 159
  start-page: 418
  year: 2012
  end-page: 432
  article-title: The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27
  publication-title: Plant Physiology
– volume: 25
  start-page: 134
  year: 2013
  end-page: 148
  article-title: HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in seedlings
  publication-title: The Plant Cell
– volume: 50
  start-page: 347
  year: 2007
  end-page: 363
  article-title: The AtGenExpress global stress expression data set: Protocols, evaluation and model data analysis of UV‐B light, drought and cold stress responses
  publication-title: The Plant Journal
– year: 2015
– volume: 99
  start-page: 286
  year: 2019
  end-page: 301
  article-title: The onset of embryo maturation in Arabidopsis is determined by its developmental stage and does not depend on endosperm cellularization
  publication-title: The Plant Journal
– volume: 110
  start-page: E435
  year: 2013
  end-page: E444
  article-title: Comprehensive developmental profiles of gene activity in regions and subregions of the seed
  publication-title: Proceedings National Academy of Sciences USA
– volume: 85
  start-page: 305
  year: 2016
  end-page: 319
  article-title: Potential targets of VIVIPAROUS1/ABI3‐LIKE1 (VAL1) repression in developing embryos
  publication-title: The Plant Journal
– volume: 49
  start-page: 1263
  issue: 9
  year: 2008
  end-page: 1271
  article-title: Transcriptional regulation of storage protein synthesis during dicotyledon seed filling
  publication-title: Plant Cell Physiology
– start-page: 7
  year: 1994
  end-page: 21
– volume: 30
  start-page: 600
  year: 2018
  end-page: 619
  article-title: HSI2/VAL1 silences to regulate the developmental transition from seed maturation to vegetative growth in Arabidopsis
  publication-title: The Plant Cell
– volume: 146
  start-page: 149
  issue: 1
  year: 2008
  end-page: 161
  article-title: The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination
  publication-title: Plant Physiology
– volume: 63
  start-page: 1391
  year: 2012
  end-page: 1404
  article-title: Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in seedlings
  publication-title: Journal of Experimental Botany
– volume: 57
  start-page: 1689
  year: 2016
  end-page: 1706
  article-title: HSI2 repressor recruits MED13 and HDA6 to down‐regulate seed maturation gene expression directly during Arabidopsis early seedling growth
  publication-title: Plant & Cell Physiology
– volume: 8
  start-page: 264
  year: 2005
  end-page: 271
  article-title: The glucosinolate–myrosinase system in an ecological and evolutionary context
  publication-title: Current Opinion in Plant Biology
– volume: 6
  start-page: 7243
  year: 2015
  article-title: SCARECROW‐LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme
  publication-title: Nature Communications
– volume: 18
  start-page: 1642
  issue: 7
  year: 2006
  end-page: 1651
  article-title: A network of local and redundant gene regulation governs Arabidopsis seed maturation
  publication-title: The Plant Cell
– volume: 2
  issue: 8
  year: 2007
  article-title: An “electronic fluorescent pictograph” browser for exploring and analyzing large‐scale biological data sets
  publication-title: PLoS ONE
– volume: 53
  start-page: 439
  issue: 2
  year: 2016
  end-page: 448
  article-title: Genome‐wide analysis of trihelix transcription factor gene family in
  publication-title: Pakistani Journal of Agricultural Sciences
– volume: 7
  issue: 3
  year: 2011
  article-title: Polycomb repressive complex 2 controls the embryo‐to‐seedling phase transition
  publication-title: PLoS Genetics
– volume: 147
  start-page: 1143
  issue: 3
  year: 2008
  end-page: 1157
  article-title: The Arabidopsis BRAHMA chromatin‐remodeling ATPase is involved in repression of seed maturation genes in leaves
  publication-title: Plant Physiology
– volume: 8
  issue: 3
  year: 2012
  article-title: EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development
  publication-title: PLoS Genetics
– volume: 163
  start-page: 205
  year: 2013
  end-page: 215
  article-title: Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination
  publication-title: Plant Physiology
– volume: 19
  start-page: 224
  issue: 2
  year: 2009
  end-page: 235
  article-title: Overexpression of PGA37/MYB118 and MYB115 promotes vegetative‐to‐embryonic transition in Arabidopsis
  publication-title: Cell Research
– volume: 6
  start-page: 1805
  year: 1994
  end-page: 1813
  article-title: Molecular dissection of GT‐1 from Arabidpsis
  publication-title: The Plant Cell
– volume: 15
  start-page: 1014
  issue: 2
  year: 1995
  end-page: 1020
  article-title: Domain analysis of the plant DNA‐binding protein GT1a: Requirement of four putative? Alpha‐helices for DNA binding and identification of a novel oligomerization region
  publication-title: Molecular and Cellular Biology
– volume: 4
  year: 2009
  article-title: Soybean Trihelix transcription factors GmGT‐2A and GmGT‐2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis
  publication-title: PLoS ONE
– volume: 250
  start-page: 959
  year: 1990
  end-page: 966
  article-title: The cauliflower mosaic virus promoter: Combinatorial regulation of transcription in plants
  publication-title: Science
– volume: 31
  start-page: 291
  year: 2018
  end-page: 307
  article-title: Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development
  publication-title: Plant Reproduction
– volume: 320
  start-page: 942
  year: 2008
  end-page: 945
  article-title: Cell identity mediates the response of Arabidopsis roots to abiotic stress
  publication-title: Science
– volume: 104
  start-page: 34
  issue: 1
  year: 2007
  end-page: 41
  article-title: Development of series of GATEWAY binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation
  publication-title: Journal of Bioscience and Bioengineering
– volume: 155
  start-page: 1871
  year: 2011
  end-page: 1884
  article-title: MicroRNAs regulate the timing of embryo maturation in
  publication-title: Plant Physiology
– volume: 6
  year: 2008
– volume: 130
  start-page: 6065
  issue: 24
  year: 2003
  end-page: 6073
  article-title: Regulation of storage protein gene expression in Arabidopsis
  publication-title: Development
– volume: 28
  start-page: 337
  issue: 3
  year: 2009
  end-page: 346
  article-title: Involvement of an R2R3‐MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis
  publication-title: Plant Cell Reports
– volume: 38
  start-page: W64
  year: 2010
  end-page: W70
  article-title: agriGO: A GO analysis toolkit for the agricultural community
  publication-title: Nucleic Acids Research
– volume: 126
  start-page: 811
  year: 2001
  end-page: 825
  article-title: Genetic control of natural variation in Arabidopsis glucosinolate accumulation
  publication-title: Plant Physiology
– volume: 78
  start-page: 3033
  year: 2010
  end-page: 3047
  article-title: Solution structures of the trihelix DNA‐binding domains of the wild‐type and a phosphomimetic mutant of GT‐1: Mechanism for an increase in DNA‐binding affinity through phosphorylation
  publication-title: Proteins
– volume: 7
  start-page: 205
  issue: 2
  year: 2012
  end-page: 209
  article-title: Is there a role for trihelix transcription factors in embryo maturation?
  publication-title: Plant Signaling & Behavior
– volume: 302
  start-page: 842
  issue: 5646
  year: 2003
  end-page: 842 846
  article-title: Empirical analysis of transcriptional activity in the Arabidopsis genome
  publication-title: Science
– volume: 186
  start-page: 534
  issue: 1
  year: 2021
  end-page: 548
  article-title: Brassinosteroids repress the seed maturation program during the seed‐to‐seedling transition
  publication-title: Plant Physiology
– volume: 562
  start-page: 147
  year: 2004
  end-page: 154
  article-title: Analysis of GT‐3a identifies a distinct subgroup of trihelix DNA‐binding transcription factors in
  publication-title: FEBS Letters
– volume: 6
  start-page: 1886
  issue: 12
  year: 2011
  end-page: 1888
  article-title: ASIL1 is required for proper timing of seed filling in Arabidopsis
  publication-title: Plant Signaling & Behavior
– volume: 21
  start-page: 54
  issue: 1
  year: 2009
  end-page: 71
  article-title: Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings
  publication-title: The Plant Cell
– ident: e_1_2_9_30_1
  doi: 10.1111/j.1365-313X.2007.03052.x
– ident: e_1_2_9_36_1
  doi: 10.3389/fpls.2012.00202
– ident: e_1_2_9_13_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_9_3_1
  doi: 10.1016/S0014-5793(04)00222-4
– ident: e_1_2_9_7_1
  doi: 10.1126/science.250.4983.959
– ident: e_1_2_9_72_1
  doi: 10.21162/PAKJAS/16.3347
– ident: e_1_2_9_26_1
  doi: 10.1007/s00497-018-00357-2
– ident: e_1_2_9_61_1
  doi: 10.1073/pnas.0607940104
– ident: e_1_2_9_63_1
  doi: 10.1387/ijdb.052046jc
– ident: e_1_2_9_21_1
  doi: 10.1093/bioinformatics/btt053
– ident: e_1_2_9_62_1
  doi: 10.1093/pcp/pcn116
– ident: e_1_2_9_51_1
  doi: 10.1093/plphys/kiab089
– ident: e_1_2_9_70_1
  doi: 10.1111/j.1365-313X.2009.03817.x
– ident: e_1_2_9_27_1
  doi: 10.1104/pp.113.220988
– ident: e_1_2_9_12_1
  doi: 10.1093/pcp/pcw095
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1365-313X.2010.04307.x
– ident: e_1_2_9_4_1
  doi: 10.4161/psb.18893
– ident: e_1_2_9_60_1
  doi: 10.1105/tpc.105.039925
– ident: e_1_2_9_69_1
  doi: 10.1126/science.1088305
– ident: e_1_2_9_22_1
  doi: 10.1146/annurev.arplant.57.032905.105228
– ident: e_1_2_9_10_1
  doi: 10.3109/10520299109110562
– ident: e_1_2_9_33_1
  doi: 10.1016/j.pbi.2005.03.002
– ident: e_1_2_9_25_1
  doi: 10.1105/tpc.6.12.1805
– ident: e_1_2_9_9_1
  doi: 10.1371/journal.pgen.1002014
– ident: e_1_2_9_43_1
  doi: 10.1371/journal.pgen.1004091
– ident: e_1_2_9_55_1
  doi: 10.1104/pp.106.092320
– ident: e_1_2_9_46_1
  doi: 10.1101/gad.1986710
– ident: e_1_2_9_64_1
  doi: 10.1371/journal.pgen.1005771
– ident: e_1_2_9_48_1
  doi: 10.1111/tpj.14324
– ident: e_1_2_9_20_1
  doi: 10.1105/tpc.108.061309
– ident: e_1_2_9_71_1
  doi: 10.1016/j.cub.2013.05.050
– ident: e_1_2_9_53_1
  doi: 10.1111/pbi.12315
– ident: e_1_2_9_54_1
  doi: 10.1101/gad.9.14.1797
– ident: e_1_2_9_42_1
  doi: 10.1111/nph.16071
– ident: e_1_2_9_32_1
  doi: 10.1104/pp.126.2.811
– volume-title: The Triumph of Seeds: How Grains, Nuts, Kernels, Pulses, and Pips Conquered the Plant Kingdom and Shaped Human History
  year: 2015
  ident: e_1_2_9_23_1
  contributor:
    fullname: Hanson T.
– ident: e_1_2_9_49_1
  doi: 10.2144/03352bm06
– ident: e_1_2_9_14_1
  doi: 10.1104/pp.113.223511
– ident: e_1_2_9_2_1
  doi: 10.1105/tpc.108.062968
– ident: e_1_2_9_29_1
  doi: 10.1016/j.tplants.2011.12.002
– ident: e_1_2_9_45_1
  doi: 10.1263/jbb.104.34
– ident: e_1_2_9_34_1
  doi: 10.1371/journal.pone.0136591
– ident: e_1_2_9_11_1
  doi: 10.1105/tpc.17.00655
– ident: e_1_2_9_31_1
  doi: 10.1371/journal.pgen.1002512
– ident: e_1_2_9_17_1
  doi: 10.1007/s00438-009-0507-x
– ident: e_1_2_9_65_1
  doi: 10.1038/cr.2008.276
– ident: e_1_2_9_47_1
  doi: 10.1104/pp.106.2.447
– ident: e_1_2_9_75_1
  doi: 10.1007/s00299-008-0644-4
– ident: e_1_2_9_5_1
  doi: 10.1199/tab.0113
– ident: e_1_2_9_8_1
  doi: 10.1105/tpc.000869
– start-page: 7
  volume-title: Embryos: Color Atlas of Development
  year: 1994
  ident: e_1_2_9_28_1
  contributor:
    fullname: Jürgens G.
– ident: e_1_2_9_56_1
  doi: 10.1104/pp.107.111674
– ident: e_1_2_9_59_1
  doi: 10.1038/s41477-019-0402-3
– ident: e_1_2_9_73_1
  doi: 10.1104/pp.112.194878
– ident: e_1_2_9_68_1
  doi: 10.1371/journal.pone.0006898
– ident: e_1_2_9_19_1
  doi: 10.4161/psb.6.12.18709
– ident: e_1_2_9_50_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_9_67_1
  doi: 10.1371/journal.pone.0000718
– ident: e_1_2_9_52_1
  doi: 10.1111/tpj.13106
– ident: e_1_2_9_39_1
  doi: 10.1126/science.aaa8332
– ident: e_1_2_9_58_1
  doi: 10.1093/jxb/err383
– ident: e_1_2_9_74_1
  doi: 10.1093/mp/ssp027
– ident: e_1_2_9_38_1
  doi: 10.1007/s00497-018-0337-2
– ident: e_1_2_9_24_1
  doi: 10.1104/pp.103.030148
– ident: e_1_2_9_15_1
  doi: 10.1126/science.1153795
– ident: e_1_2_9_18_1
  doi: 10.1038/ncomms8243
– ident: e_1_2_9_57_1
  doi: 10.1104/pp.108.121996
– ident: e_1_2_9_41_1
  doi: 10.3389/fpls.2017.00044
– ident: e_1_2_9_76_1
  doi: 10.1105/tpc.109.068890
– ident: e_1_2_9_37_1
  doi: 10.1128/MCB.15.2.1014
– ident: e_1_2_9_44_1
  doi: 10.1002/prot.22827
– ident: e_1_2_9_16_1
  doi: 10.1093/nar/gkq310
– ident: e_1_2_9_35_1
  doi: 10.1242/dev.00814
– ident: e_1_2_9_77_1
  doi: 10.1105/tpc.112.096313
– ident: e_1_2_9_6_1
  doi: 10.1073/pnas.1222061110
– ident: e_1_2_9_66_1
  doi: 10.1104/pp.110.171355
SSID ssj0002176085
Score 2.2307165
Snippet Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo...
Abstract Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo...
Abstract Developmental transitions are typically tightly controlled at the transcriptional level. Two of these transitions involve the induction of the embryo...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e345
SubjectTerms Arabidopsis
embryo
Embryogenesis
embryonic maturation program
Embryos
Genes
Hypotheses
Maturation
MicroRNAs
Original Research
Proteins
Regulation
Repressors
Seeds
Transcription factors
trihelix factor
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yT76IcupV7ySC-FY35KvJ4_qxrLKKoAf3FpI0ZRfuukd3F_zznUnbdZfz8MWnpk1SMjNN5hc6-Q0hb1jiiuvEyoR8iFLFVFoRdGmijbXVjdU1HhT--k3PL-WXK3V1kOoLY8J6euBecRNbp8oGWZvgpbRCB6ZAeK994qyWqs6rL7MHmylcgwFoawATI9ss45Pb61q8E3hq6cD_ZJr-v2HLuyGSh9A1-57ZY_JoAI102g_2CXmQ2lPSTWmX_pB103VDAcxRDBccy9Mfnxd0262W6Xr1CwrglsZFgg6Jdqjf0K6PhsW7oeMGfBq9Qc7P_t1DFNdTcjn79PPDvBwyKJRRAVYrjWgq1ViebKoCrwySiYUIc1QZi7zuOgqrvDbehkbZgM0awBu1T6BS2JmIZ-SkXbfpjFDYGRkeeWCNEZLFYHwFxowGIEQVlKwK8nrUq7vtiTJcT4nMHerege4L8h4Vvq9Hauv8AAzuBoO7fxm8IOejudww3zaOKwOiYUItGMe-GmYK_v7wbVrvchumUWxekOe9dfcjEVJzcOLQuzqy-9FQj2va1TKzcRtpYNtlC_I2fyH3Cu--Lz4KuL74H0p4SR5yDK7JUYXn5GTb7dIFoKNteJUnwm-ivA_t
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCQLwCBRkJcQs1fsU-oS20KqhUFVCpN8t2HLpSSZbsVuLnM5M42654nOLEdmR7bM9ne_wNIa9Y4orrxMqEfIhSxVRaEXRpoo211Y3VNV4U_nyij87kp3N1njfcVtmscpoTh4m67iLuke9xZbTU6DLp3fJniV6j8HQ1u9C4TXY4rBTYjOzsH5ycftnssgDg1gAqJtZZxveWl7V4I_D20g09NND1_w1j_mkqeRPCDjro8B65m8EjnY_Svk9upfYB6ee0T9ek3bRrKIA6imaDU3j-9eMxXfeLi3S5-AUBUE_TZEGzwx3qV7QfrWLxLWdcgW6jP5D7c_x3tuZ6SM4OD769PyqzJ4UyKsBspRFNpRrLk01V4JVBUrEQYawqY5HfXUdhldfG29AoGzBZA7ij9uktLHEAcT0is7Zr0xNCYYVkeOSBNUZIFoPxFQg1GoASVVCyKsjLqV3dciTMcCM1MnfY9g7aviD72OCbeKS4Hj50_XeXR4yzdapskLUJXkordGAKer3XPnFWS1UXZHcSl8vjbuWuewmUYxMNIwaPQXybuqshDdNYbV6Qx6N0NyURUnNQ5pC72pL7VlG3Y9rFxcDKbaSB5ZctyOuhh_yz8u70-IOA59P_l_8ZucPRfGawG9wls3V_lZ4D_lmHF7mT_wYerweb
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXLggKl6BUhkJcQs1fvu4tFQFFVQJKvVm2Y5DK5Vsld1K_fmdcR5lBUic4sR2NPZ4Mp-d8WdC3rLMFdeZ1Rn5EKVKuXYi6tomlxqnW6cb3Cj89Zs-OpVfztTZGFWJe2EGfoh5wQ0to3yv0cBDXO3dkYZeXTbivZDqPnmAhDHIm8_lyby-AlBbs3IiJ5cGpJBKTdyzjO9NlTe8USHt_xvS_DNg8ncgWzzR4WPyaISQdDHofJvcy90T0i9on--ou-mypQDtKAYPTunF98_HdN1fnEPDbyABTmr6ZNDx2B0aVrQfYmPxbqy4Ag9HfyED6PDuMabrKTk9_PRj_6gez1OokwLkVlvRGtU6nl02kRuL1GIxgcUq65DlXSfhVNA2uNgqF7FYC-ijCfkDTHQAdz0jW92yyy8IhXmS5YlH1lohWYo2GFBtsgAoTFTSVOTN1K_-aqDN8ANBMvfY9x76viIfscPnfCS6Lg-W_U8_2o13TTYuysbGIKUTOjIFYz_okDlrpGoqsjOpy4_Wt_JcWWgaHq8FcszZYDf4MyR0eXldyjCNzeYVeT5od5ZESM3BpUNts6H3DVE3c7qL88LNbaWFSZiryLsyQv7ZeH9yfCDg-vJ_C74iDzmG05Q4wh2yte6v82vAQ-u4Wwb-LZeLB4g
  priority: 102
  providerName: Wiley-Blackwell
Title A reevaluation of the role of the ASIL trihelix transcription factors as repressors of the seed maturation program
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpld3.345
https://www.ncbi.nlm.nih.gov/pubmed/34622120
https://www.proquest.com/docview/2586464860
https://search.proquest.com/docview/2580697502
https://pubmed.ncbi.nlm.nih.gov/PMC8483069
https://doaj.org/article/9de79b4d8ba44936b05eada6ae20d45d
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9sgFH5qussu06b9ctdFVJp2c-Lxy3BMu1Zt1VbRtkq9IYPxGilxIieV9ufvge2s0dbLTsYG28B7wIf98QHwKfNUUOmz1Ac9RC6cTzWzMlVOu1LLSssyLBS-vpHnt_zyTtztgejXwkTSvrOzUT1fjOrZfeRWrhZu3PPExtPrE8UVIl09HsAAHfTRFD10v4ixJeKIXmg2o-PVvGQjxsMmNYxLip11tjMKRbH-fyHMv4mSjwFsHIHOXsKLDjqSSZvFV7Dn69fQTEjj_0h2k2VFENKRQBrsw5PvF1dk08zu_Xz2CwM4OPVdBem22yHFmjQtJzacdTeucWQji6D82T6743K9gduz0x8n52m3j0LqBCK2VLEqF5WmXvvc0lwFSTHrsKUKpYO6u3RMi0KqQttKaBuSVYg6ysJ_wQkO4q23sF8va_8eCM6PFHXUZpViPHNWFTma1CkEErkVPE_gqK9Xs2rlMkwrjExNMINBMyRwHCp8Gx8EruOFZfPTdGY2uvS5trxUtuBcM2kzgT5fyMLTrOSiTOCwN5fpWt3aUKGwaGFbLczHNhrbS_gJUtR--RDToOtgsWkC71rrbnPSe0cC-Y7dd7K6G4MuGjW5O5dM4HP0kCcLb6ZXXxkeD_77FR_gOQ28mkgoPIT9TfPgPyIw2tghDCifDuHZ8enN9Nswfl4YxsbxG6s4Eow
link.rule.ids 230,315,730,783,787,867,888,2109,11574,21400,27936,27937,33756,33757,43817,46064,46488,50826,50935,53804,53806,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9wgEEZtcmgvUau-nKQNlare3LgYMJyqTZNo025WUZtIuSHzcLNSam-8G6k_vzM23mTVx8nYgAUMMB8wfEPIuywwwWTI0oB8iFy4kOrcylQ57byWlZYeLwqfTuX4gn-5FJdxw20RzSqHObGbqH3jcI98nwkluUSXSZ_mNyl6jcLT1ehC4yHZRKoqWHxtHhxNz76tdlkAcEsAFQPrbMb259c-_5Dj7aV7eqij6_8bxvzTVPI-hO100PETshXBIx310n5KHoT6GWlHtA13pN20qSiAOopmg0N49P1kQpft7Cpcz35BANTTMFnQ6HCHlgva9lax-BYzLkC30Z_I_dn_O1pzPScXx0fnn8dp9KSQOgGYLVV5VYhKs6BDYVmhkFTMOhirQmnkd5cu16KUqtS2Etpisgpwhy_DR1jiAOJ6QTbqpg6vCIUVkmKO2axSOc-cVWUBQnUKoERhBS8S8nZoVzPvCTNMT43MDLa9gbZPyAE2-CoeKa67D037w8QRY7QPhbbcK1tyrnNpMwG9vpRlYJnnwidkdxCXieNuYe56CZRjFQ0jBo9Byjo0t12aTGK1WUJe9tJdlSTnkoEyh9zFmtzXiroeU8-uOlZuxRUsv3RC3nc95J-VN2eTwxye2_8v_x55ND4_nZjJyfTrDnnM0JSmsyHcJRvL9ja8Biy0tG9ih_8NyWAKlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLagkxAvCMQtMMBIiLfQ4FvsJ9SxVRuUqgIm7c2KHWerNJKSdhI_n3MSp1vF5SlOnESOj4_P5-TLdwh5kwUmmQpZGlAPUUgfUsOdSrU3vjSqMqrEH4W_zNXxqfh0Js8i_2kdaZXDnNhN1GXj8R35mEmthMKUSeMq0iIWh9MPq58pZpDCL60xncZtspcLxbMR2Ts4mi--bt-4APhWADAGBdqMjVeXJX_H8U-mGzGpk-7_G978kzZ5E8528Wh6n9yLQJJOess_ILdC_ZC0E9qGawFv2lQUAB5FCuFQnnw7mdFNu7wIl8tfUIBQNUwcNCbfocWatj1DFvfihWuIc_QH6oD2947MrkfkdHr0_eNxGrMqpF4Cfks1r3JZGRZMyB3LNQqMOQ9-K7VBrXfluZGF0oVxlTQOT6sAg5RFeA_LHUBfj8moburwlFBYLWnmmcsqzUXmnS5yMLDXACtyJ0WekNdDv9pVL55he5lkZrHvLfR9Qg6ww7f1KHfdHWjacxu9x5oy5MaJUrtCCMOVyyR4QKGKwLJSyDIh-4O5bPTBtb0eMdCObTV4D34SKerQXHXnZAofmyXkSW_dbUu4UAwCO1yd79h9p6m7NfXyolPo1kLDUswk5G03Qv758HYxO-Swffb_9r8id2Cs29nJ_PNzcpchq6ajE-6T0aa9Ci8AFm3cyzjefwMYoQ7D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reevaluation+of+the+role+of+the+ASIL+trihelix+transcription+factors+as+repressors+of+the+seed+maturation+program&rft.jtitle=Plant+direct&rft.au=Ruiz%2C+Kevin+A&rft.au=Pelletier%2C+Julie+M&rft.au=Wang%2C+Yuchi&rft.au=Feng%2C+Min+Jun&rft.date=2021-10-01&rft.eissn=2475-4455&rft.volume=5&rft.issue=10&rft.spage=e345&rft.epage=e345&rft_id=info:doi/10.1002%2Fpld3.345&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-4455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-4455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-4455&client=summon