Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism

Replenishment of brain glycogen stores depleted during waking has been suggested to constitute one of the functions of sleep [Benington, J. H. & Heller H. C. (1995) Prog. Neurobiol., 45, 347]. We have tested the hypothesis that the level of expression of enzymes involved in glycogen metabolism c...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 16; no. 6; pp. 1163 - 1167
Main Authors Petit, Jean-Marie, Tobler, Irene, Allaman, Igor, Borbély, Alexander A., Magistretti, Pierre J.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science, Ltd 01.09.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Replenishment of brain glycogen stores depleted during waking has been suggested to constitute one of the functions of sleep [Benington, J. H. & Heller H. C. (1995) Prog. Neurobiol., 45, 347]. We have tested the hypothesis that the level of expression of enzymes involved in glycogen metabolism could undergo variations throughout the sleep‐waking or rest‐activity cycle, and after 6 h of ‘gentle’ total sleep deprivation in mice. Specifically, we determined the variations in mRNAs coding for protein targeting to glycogen (PTG), glycogen synthase and glycogen phosphorylase, all considered as key regulators of glycogen metabolism. Glycogen synthase and glycogen phosphorylase mRNAs exhibited significant variations throughout the light‐dark cycle with a maximum at the middle of the light period and a minimum at the middle of the dark period. Following sleep deprivation, a two‐fold increase in PTG mRNA and a decrease of mRNAs encoding glycogen synthase and glycogen phosphorylase were observed. These transcriptional events have functional consequences as the activity of glycogen synthase was increased 2.5‐fold indicating a stimulating effect of sleep deprivation on glycogen synthesis. These results indicate that (i) expression of genes related to brain glycogen metabolism exhibit variations throughout the sleep‐waking or rest‐activity cycle and (ii) given the almost selective localization of glycogen to astrocytes, these cells might participate in the regulation of sleep.
Bibliography:istex:AA23CD912B91C42FA2C435EC5F9321414EEFAAFE
ArticleID:EJN2145
ark:/67375/WNG-TFMP4MR7-K
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0953-816X
1460-9568
DOI:10.1046/j.1460-9568.2002.02145.x