Orphan Adhesion GPCR GPR64/ADGRG2 Is Overexpressed in Parathyroid Tumors and Attenuates Calcium‐Sensing Receptor‐Mediated Signaling

ABSTRACT Abnormal feedback of serum calcium to parathyroid hormone (PTH) secretion is the hallmark of primary hyperparathyroidism (PHPT). Although the molecular pathogenesis of parathyroid neoplasia in PHPT has been linked to abnormal expression of genes involved in cell growth (e.g., cyclin D1, ret...

Full description

Saved in:
Bibliographic Details
Published inJournal of bone and mineral research Vol. 32; no. 3; pp. 654 - 666
Main Authors Balenga, Nariman, Azimzadeh, Pedram, Hogue, Joyce A, Staats, Paul N, Shi, Yuhong, Koh, James, Dressman, Holly, Olson, John A
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Abnormal feedback of serum calcium to parathyroid hormone (PTH) secretion is the hallmark of primary hyperparathyroidism (PHPT). Although the molecular pathogenesis of parathyroid neoplasia in PHPT has been linked to abnormal expression of genes involved in cell growth (e.g., cyclin D1, retinoblastoma, and β‐catenin), the molecular basis of abnormal calcium sensing by calcium‐sensing receptor (CaSR) and PTH hypersecretion in PHPT are incompletely understood. Through gene expression profiling, we discovered that an orphan adhesion G protein‐coupled receptor (GPCR), GPR64/ADGRG2, is expressed in human normal parathyroid glands and is overexpressed in parathyroid tumors from patients with PHPT. Using immunohistochemistry, Western blotting, and coimmunoprecipitation, we found that GPR64 is expressed on the cell surface of parathyroid cells, is overexpressed in parathyroid tumors, and physically interacts with the CaSR. By using reporter gene assay and GPCR second messenger readouts we identified Gαs, 3′,5′‐cyclic adenosine monophosphate (cAMP), protein kinase A, and cAMP response element binding protein (CREB) as the signaling cascade downstream of GPR64. Furthermore, we found that an N‐terminally truncated human GPR64 is constitutively active and a 15–amino acid–long peptide C‐terminal to the GPCR proteolysis site (GPS) of GPR64 activates this receptor. Functional characterization of GPR64 demonstrated its ability to increase PTH release from human parathyroid cells at a range of calcium concentrations. We discovered that the truncated constitutively active, but not the full‐length GPR64 physically interacts with CaSR and attenuates the CaSR‐mediated intracellular Ca2+ signaling and cAMP suppression in HEK293 cells. Our results indicate that GPR64 may be a physiologic regulator of PTH release that is dysregulated in parathyroid tumors, and suggest a role for GPR64 in pathologic calcium sensing in PHPT. © 2016 American Society for Bone and Mineral Research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authors’ roles: NB and JAO conceived the project, designed and performed the experiments, and co-wrote the manuscript. JAO and HD conducted and analyzed the expression array data. PA performed some of the Western blotting experiments. YS edited the manuscript. JAH, JK, and PNS conducted and evaluated the accuracy and consistency of the immunohistochemistry in tissues.
ISSN:0884-0431
1523-4681
DOI:10.1002/jbmr.3023