Lessons from patient-derived xenografts for better in vitro modeling of human cancer
The development of novel cancer therapeutics is often plagued by discrepancies between drug efficacies obtained in preclinical studies and outcomes of clinical trials. The inconsistencies can be attributed to a lack of clinical relevance of the cancer models used for drug testing. While commonly use...
Saved in:
Published in | Advanced drug delivery reviews Vol. 79-80; pp. 222 - 237 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The development of novel cancer therapeutics is often plagued by discrepancies between drug efficacies obtained in preclinical studies and outcomes of clinical trials. The inconsistencies can be attributed to a lack of clinical relevance of the cancer models used for drug testing. While commonly used in vitro culture systems are advantageous for addressing specific experimental questions, they are often gross, fidelity-lacking simplifications that largely ignore the heterogeneity of cancers as well as the complexity of the tumor microenvironment. Factors such as tumor architecture, interactions among cancer cells and between cancer and stromal cells, and an acidic tumor microenvironment are critical characteristics observed in patient-derived cancer xenograft models and in the clinic. By mimicking these crucial in vivo characteristics through use of 3D cultures, co-culture systems and acidic culture conditions, an in vitro cancer model/microenvironment that is more physiologically relevant may be engineered to produce results more readily applicable to the clinic.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0169-409X 1872-8294 |
DOI: | 10.1016/j.addr.2014.09.009 |