Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway
Bacteria of the genus Methylobacillus are methanotrophs, a metabolic feature that is widespread in the phylum Proteobacteria. The study demonstrates the isolation and characterization of a newly isolated Methylobacillus sp. V29b. which grows on methanol, protocatechuate, monobutyl phthalate, dibutyl...
Saved in:
Published in | 3 Biotech Vol. 6; no. 2; pp. 200 - 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bacteria of the genus
Methylobacillus
are methanotrophs, a metabolic feature that is widespread in the phylum Proteobacteria. The study demonstrates the isolation and characterization of a newly isolated
Methylobacillus
sp. V29b. which grows on methanol, protocatechuate, monobutyl phthalate, dibutyl phthalate, diethyl phthalate, benzyl butyl phthalate, dioctyl phthalate and diisodecyl phthalate.
Methylobacillus
sp. V29b was characterized with scanning electron microscopy, transmission electron microscopy, Gram staining, antibiotics sensitivity tests and biochemical characterization. It degrades 70 % of the initial DBP in minimal salt medium and 65 % of the initial DBP in samples contaminated with DBP. DBP biodegradation kinetics was explained by the Monod growth inhibition model. Values for maximum specific growth rate (
µ
max
) and half-velocity constant (
K
s
) are 0.07 h
−1
and 998.2 mg/l, respectively. Stoichiometry for DBP degradation was calculated for
Methylobacillus
sp. V29b. Four metabolic intermediates, dibutyl phthalate (DBP), monobutyl phthalate, phthalic acid and pyrocatechol, were identified. Based on the metabolic intermediates identified, a chemical pathway for DBP degradation was proposed. Six genes for phthalic acid degradation were identified from the genome of
Methylobacillus
sp. V29b. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2190-572X 2190-5738 |
DOI: | 10.1007/s13205-016-0524-5 |