Functionalisation of Electrospun Cellulose Acetate Membranes with PEDOT and PPy for Electronic Controlled Drug Release

Controlled drug release via electrical stimulation from drug-impregnated fibres was studied using electrospun cellulose acetate (CA) membranes and encapsulated ibuprofen (IBU). This research outlines the influence of polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT)-functionalised CA me...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 13; no. 9; p. 1493
Main Authors Lago, Beatriz, Brito, Miguel, Almeida, Cristina M M, Ferreira, Isabel, Baptista, Ana Catarina
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Controlled drug release via electrical stimulation from drug-impregnated fibres was studied using electrospun cellulose acetate (CA) membranes and encapsulated ibuprofen (IBU). This research outlines the influence of polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT)-functionalised CA membranes and their suitability for dermal electronic-controlled drug release. Micro Raman analysis confirmed polymer functionalisation of CA membranes and drug incorporation. Scanning electron microscopy (SEM) images evidenced the presence of PPy and PEDOT coatings. The kinetic of drug release was analysed, and the passive and active release was compared. In the proposed systems, the drug release is controlled by very low electrical potentials. A potential of -0.3 V applied to membranes showed the ibuprofen retention, and a positive potential of +0.3 V, +0.5 V, or +0.8 V, depending on the conductive polymer and membrane configuration, enhanced the drug release. A small adhesive patch was constructed to validate this system for cutaneous application and verified an "ON/OFF" ibuprofen release pattern from membranes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13091493