Chlorine gas induced acute lung injury in isolated rabbit lung

This study was designed to investigate the pathogenesis of chlorine gas (Cl2) induced acute lung injury and oedema. Isolated blood-perfused rabbit lungs were ventilated either with air (n=7) or air plus 500 parts per million (ppm) of Cl2 (n=7) for 10 min. Capillary pressure, measured by analysing th...

Full description

Saved in:
Bibliographic Details
Published inThe European respiratory journal Vol. 10; no. 5; pp. 1100 - 1107
Main Authors Menaouar, A, Anglade, D, Baussand, P, Pelloux, A, Corboz, M, Lantuejoul, S, Benchetrit, G, Grimbert, FA
Format Journal Article
LanguageEnglish
Published Leeds Eur Respiratory Soc 01.05.1997
Maney
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study was designed to investigate the pathogenesis of chlorine gas (Cl2) induced acute lung injury and oedema. Isolated blood-perfused rabbit lungs were ventilated either with air (n=7) or air plus 500 parts per million (ppm) of Cl2 (n=7) for 10 min. Capillary pressure, measured by analysing the pressure/time transients of pulmonary arterial, venous and double (both arterial and venous) occlusions, was unchanged in both groups. In Cl2-exposed lungs, the fluid filtration rate increased from -0.228+/-0.25 to 1.823+/-1.23 mL min(-1) x 100 g(-1) (p<0.001) and the filtration coefficient increased from 0.091+/-0.01 to 0.259+/-0.07 mL x min(-1) x cmH2O(-1) x 100 g(-1) (p<0.001). No changes were observed in the control lungs. The extravascular lung water/blood-free dry weight ratio was 8.6+/-1.6 in the Cl2 group and 4.0+/-0.5 in the control group (p<0.001), confirming that the increase in lung weight was related to accumulation of extravascular fluid. Although the alveolar flooding by oedema is explained, in part, by the Cl2-induced epithelial injury, our results suggest that Cl2 exposure induces acute lung injury and oedema due to an increased microvascular permeability.
ISSN:0903-1936
1399-3003
DOI:10.1183/09031936.97.10051100