Life-time prediction for advanced low alloy steel P23

Lifetime models for both creep and thermo-mechanical fatigue are presented for P23 steel. The models are the result of the joint European RFCS project ALoAS. The creep model, developed for robust creep strain modeling, here adjusted to describe the strain response of the ALoAS data, i.e. P23 pipe ma...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 510; pp. 175 - 179
Main Authors von Hartrott, Philipp, Holmström, Stefan, Caminada, Stefano, Pillot, Sylvain
Format Journal Article Conference Proceeding
LanguageEnglish
Published Kidlington Elsevier B.V 15.06.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lifetime models for both creep and thermo-mechanical fatigue are presented for P23 steel. The models are the result of the joint European RFCS project ALoAS. The creep model, developed for robust creep strain modeling, here adjusted to describe the strain response of the ALoAS data, i.e. P23 pipe material fabricated by TenarisDalmine and plate material heat fabricated by Industeel. The creep modeling range covers 550–660 °C in temperature and 80–180 MPa in stress. The thermo-mechanical fatigue model is adjusted to the acquired data on thick walled P23 pipe material fabricated by TenarisDalmine. The load range covers 20–625 °C and up to 16,000 cycles to failure. A good description of the data has been achieved for both creep and fatigue models.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2008.04.117