A hybrid approach to predict the relationship between tablet tensile strength and compaction pressure using analytical powder compression

[Display omitted] The objective was to present a hybrid approach to predict the strength-pressure relationship (SPR) of tablets using common compression parameters and a single measurement of tablet tensile strength. Experimental SPR were derived for six pharmaceutical powders with brittle and ducti...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pharmaceutics and biopharmaceutics Vol. 125; pp. 28 - 37
Main Authors Persson, Ann-Sofie, Alderborn, Göran
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] The objective was to present a hybrid approach to predict the strength-pressure relationship (SPR) of tablets using common compression parameters and a single measurement of tablet tensile strength. Experimental SPR were derived for six pharmaceutical powders with brittle and ductile properties and compared to predicted SPR based on a three-stage approach. The prediction was based on the Kawakita b-1 parameter and the in-die Heckel yield stress, an estimate of maximal tensile strength, and a parameter proportionality factor α. Three values of α were used to investigate the influence of the parameter on the SPR. The experimental SPR could satisfactorily be described by the three stage model, however for sodium bicarbonate the tensile strength plateau could not be observed experimentally. The shape of the predicted SPR was to a minor extent influenced by the Kawakita b-1 but the width of the linear region was highly influenced by α. An increased α increased the width of the linear region and thus also the maximal predicted tablet tensile strength. Furthermore, the correspondence between experimental and predicted SPR was influenced by the α value and satisfactory predictions were in general obtained for α = 4.1 indicating the predictive potential of the hybrid approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0939-6411
1873-3441
1873-3441
DOI:10.1016/j.ejpb.2017.12.011