Influence of material parameters on acoustic wave propagation modes in ZnO/Si bi-layered structures

The influences of material properties on acoustic wave propagation modes in ZnO/Si bi-layered structures are studied. The transfer matrix method is used to calculate dispersion relations, wave field distributions, and electromechanical coupling coefficients of acoustic wave propagation modes in ZnO/...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 52; no. 12; pp. 2361 - 2369
Main Authors Hui-dong Gao, Shu-yi Zhang, Xue Qi, Wasa, K., Hao-dong Wu
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The influences of material properties on acoustic wave propagation modes in ZnO/Si bi-layered structures are studied. The transfer matrix method is used to calculate dispersion relations, wave field distributions, and electromechanical coupling coefficients of acoustic wave propagation modes in ZnO/Si bi-layered systems, in which the thickness of the substrate is of the same order of magnitude as the wavelength of the propagating wave modes. The influences of the thin film parameters on the acoustic wave propagation modes and their electromechanical coupling coefficients of the wave modes also are obtained. In addition, some experimental results for characterizing the wave propagation modes and their frequencies have also been obtained, which agree well with the theoretical predictions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2005.1563280