Terpinen-4-ol, the Main Bioactive Component of Tea Tree Oil, as an Innovative Antimicrobial Agent against Legionella pneumophila

Legionella pneumophila (Lp), responsible for a severe pneumonia called Legionnaires’ disease, represents an important health burden in Europe. Prevention and control of Lp contamination in warm water systems is still a great challenge often due to the failure in disinfection procedures. The aim of t...

Full description

Saved in:
Bibliographic Details
Published inPathogens (Basel) Vol. 11; no. 6; p. 682
Main Authors Mondello, Francesca, Fontana, Stefano, Scaturro, Maria, Girolamo, Antonietta, Colone, Marisa, Stringaro, Annarita, Vito, Maura Di, Ricci, Maria Luisa
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 14.06.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Legionella pneumophila (Lp), responsible for a severe pneumonia called Legionnaires’ disease, represents an important health burden in Europe. Prevention and control of Lp contamination in warm water systems is still a great challenge often due to the failure in disinfection procedures. The aim of this study was to evaluate the in vitro activity of Terpinen-4-ol (T-4-ol) as potential agent for Lp control, in comparison with the essential oil of Melaleuca alternifolia (tea tree) (TTO. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of T-4-ol were determined by broth micro-dilution and a micro-atmosphere diffusion method to investigate the anti-Lp effects of T-4-ol and TTO vapors. Scanning Electron Microscopy (SEM) was adopted to highlight the morphological changes and Lp damage following T-4-ol and TTO treatments. The greatest antimicrobial activity against Lp was shown by T-4-ol with a MIC range of 0.06–0.125% v/v and MBC range of 0.25–0.5% v/v. The TTO and T-4-ol MIC and MBC decreased with increasing temperature (36 °C to 45 ± 1 °C), and temperature also significantly influenced the efficacy of TTO and T-4-ol vapors. The time-killing assay showed an exponential trend of T-4-ol bactericidal activity at 0.5% v/v against Lp. SEM observations revealed a concentration- and temperature- dependent effect of T-4-ol and TTO on cell surface morphology with alterations. These findings suggest that T-4-ol is active against Lp and further studies may address the potential effectiveness of T-4-ol for control of water systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors contributed equally to this work.
ISSN:2076-0817
2076-0817
DOI:10.3390/pathogens11060682