The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model

Ice clouds are an important yet largely unvalidated component of weather forecasting and climate models, but radar offers the potential to provide the necessary data to evaluate them. First in this paper, coordinated aircraft in situ measurements and scans by a 3-GHz radar are presented, demonstrati...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied meteorology and climatology Vol. 45; no. 2; pp. 301 - 317
Main Authors Hogan, Robin J., Mittermaier, Marion P., Illingworth, Anthony J.
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 01.02.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ice clouds are an important yet largely unvalidated component of weather forecasting and climate models, but radar offers the potential to provide the necessary data to evaluate them. First in this paper, coordinated aircraft in situ measurements and scans by a 3-GHz radar are presented, demonstrating that, for stratiform midlatitude ice clouds, radar reflectivity in the Rayleigh-scattering regime may be reliably calculated from aircraft size spectra if the “Brown and Francis” mass–size relationship is used. The comparisons spanned radar reflectivity values from −15 to +20 dBZ, ice water contents (IWCs) from 0.01 to 0.4 g m−3, and median volumetric diameters between 0.2 and 3 mm. In mixed-phase conditions the agreement is much poorer because of the higher-density ice particles present. A large midlatitude aircraft dataset is then used to derive expressions that relate radar reflectivity and temperature to ice water content and visible extinction coefficient. The analysis is an advance over previous work in several ways: the retrievals vary smoothly with both input parameters, different relationships are derived for the common radar frequencies of 3, 35, and 94 GHz, and the problem of retrieving the long-term mean and the horizontal variance of ice cloud parameters is considered separately. It is shown that the dependence on temperature arises because of the temperature dependence of the number concentration “intercept parameter” rather than mean particle size. A comparison is presented of ice water content derived from scanning 3-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating cases spanning 39 h over southern England. It is found that the model predicted mean IWC to within 10% of the observations at temperatures between −30° and −10°C but tended to underestimate it by around a factor of 2 at colder temperatures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1558-8424
1558-8432
DOI:10.1175/jam2340.1