Formation of toxic chemicals including dioxin-related compounds by combustion from a small home waste incinerator

We investigated combustion in a small home waste incinerator and analyzed both flue gas and residual ash for formation of the dioxin-related compounds polychlorinated dibenzo- p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls and their precursors polychlorinated benzen...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 62; no. 3; pp. 459 - 468
Main Authors Nakao, Teruyuki, Aozasa, Osamu, Ohta, Souichi, Miyata, Hideaki
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 2006
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated combustion in a small home waste incinerator and analyzed both flue gas and residual ash for formation of the dioxin-related compounds polychlorinated dibenzo- p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls and their precursors polychlorinated benzenes, polychlorinated phenols, polychlorinated diphenyl ethers, and polychlorinated biphenyls. Particularly, we investigated the effect of the incinerated material’s composition on both the congener ratios of released compounds and the total concentration of all congeners of each compound. Eight different samples were prepared for incineration with four samples consist entirely paper, dead leaves, natural wood, or building materials. The remaining four samples contained mostly paper, but also other components such as fiber, non-chlorine-containing plastics, chlorine-containing plastics, and copper electric wire. The presence of non-chlorine-containing plastic in combustion samples did not increase overall dioxin or dioxin-precursor emissions. In contrast, chlorine-containing plastic resulted in a several-fold increase in total polychlorinated dioxins released, in both flue gas and residual ash. Copper wire resulted in a further several-fold increase in total polychlorinated dioxins and dioxin precursors released, with one exception: the addition of chlorine-containing plastic resulted in a many-fold increase in polychlorinated biphenyls, but only a modest further increase (∼52%) with the further addition of copper. Homologue ratios tended toward higher-chlorine compounds as chlorine-containing plastic and Cu were added, but the results were far from uniform. Our results show that toxic dioxin release from small home waste incinerators must be considered significant, especially if even small amounts of chlorine-containing plastics or copper are burned.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2005.04.060