Network Allocation Vector (NAV) Optimization for Underwater Handshaking-Based Protocols

In this paper, we obtained the optimized network allocation vector (NAV) for underwater handshaking-based protocols, as inefficient determination of the NAV leads to unnecessarily long silent periods. We propose a scheme which determines the NAV by taking into account all possible propagation delays...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 17; no. 1; p. 32
Main Authors Cho, Junho, Shitiri, Ethungshan, Cho, Ho-Shin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2017
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we obtained the optimized network allocation vector (NAV) for underwater handshaking-based protocols, as inefficient determination of the NAV leads to unnecessarily long silent periods. We propose a scheme which determines the NAV by taking into account all possible propagation delays: propagation delay between a source and a destination; propagation delay between a source and the neighbors; and propagation delay between a destination and the neighbors. Such an approach effectively allows the NAV to be determined precisely equal to duration of a busy channel, and the silent period can be set commensurate to that duration. This allows for improvements in the performance of handshaking-based protocols, such as the carrier sense multiple access/collision avoidance (CSMA/CA) protocol, in terms of throughput and fairness. To evaluate the performance of the proposed scheme, performance comparisons were carried out through simulations with prior NAV setting methods. The simulation results show that the proposed scheme outperforms the other schemes in terms of throughput and fairness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s17010032