A Study on the Energy Condition and Quantitative Analysis of the Occurrence of a Coal and Gas Outburst

With mining depths increasing, coal and gas outburst disasters are becoming more and more serious and complicated, which directly restricts the production efficiency of coal mines. In order to study the rules of energy dissipation during the occurrence of a coal and gas outburst based on the occurre...

Full description

Saved in:
Bibliographic Details
Published inShock and vibration Vol. 2019; no. 2019; pp. 1 - 13
Main Authors Wang, Bo, Sun, Haitao, Yang, Xuelin, Cao, Jie, Liu, Yanbao, Dai, Linchao, Wen, Guangcai
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2019
Hindawi
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With mining depths increasing, coal and gas outburst disasters are becoming more and more serious and complicated, which directly restricts the production efficiency of coal mines. In order to study the rules of energy dissipation during the occurrence of a coal and gas outburst based on the occurrence mechanisms, a simulation experiment of a coal and gas outburst with a ground stress of 16 MPa and a gas pressure of 0.5 MPa was carried out using a self-developed large-scale coal and gas outburst simulation experimental system. A quantitative analysis was given based on the energy model. The results showed the following: (1) In the process of the coal and gas outburst, the main energy source originated from the elastic potential energy of the coal body and the gas internal energy. The main energy loss was used for coal crushing and throwing. (2) The outburst coal sample in this experiment had a mass of 18.094 kg, and the relative outburst intensity was 1.21%. Additionally, the farthest throwing distance of the outburst coal samples was 3.3 m away from the outburst hole wall. The distribution of the outburst coal sample decreased along the roadway, and the proportion of the coal sample grain size in each area first decreased and then increased with the decrease of the grain size. The coal samples with a grain size less than 0.2 mm after the outburst accounted for 6.34% of the mass of the total coal samples. (3) The elastic potential energy of the coal body accounted for 0.34% of the total outburst energy, while the gas internal energy accounted for 99.66%. It was verified that gas internal energy was the key energy source for the coal and gas outburst, and this internal energy was two orders of magnitude more than the elastic potential energy, playing a leading role in the outburst process. After the outburst initiation, most of the energy was consumed in coal crushing, which was in the same order of magnitude as the gas internal energy. Moreover, the energy losses due to friction, vibration, and sound during the outburst process comprised no more than 10% of the total energy. The research results can provide certain guidance for clarifying the mechanism of a coal and gas outburst and the quantitative analysis of outburst energy.
ISSN:1070-9622
1875-9203
DOI:10.1155/2019/8651353