Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature

Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films in which the...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 11; no. 5; pp. 444 - 448
Main Authors Moreau-Luchaire, C., Moutafis, C., Reyren, N., Sampaio, J., Vaz, C. A. F., Van Horne, N., Bouzehouane, K., Garcia, K., Deranlot, C., Warnicke, P., Wohlhüter, P., George, J.-M., Weigand, M., Raabe, J., Cros, V., Fert, A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films in which the cobalt layer is sandwiched between two heavy metals and so provides additive interfacial Dzyaloshinskii–Moriya interactions (DMIs), which reach a value close to 2 mJ m –2 in the case of the Ir|Co|Pt asymmetric multilayers. Using a magnetization-sensitive scanning X-ray transmission microscopy technique, we imaged small magnetic domains at very low fields in these multilayers. The study of their behaviour in a perpendicular magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the large DMI. This discovery of stable sub-100 nm individual skyrmions at room temperature in a technologically relevant material opens the way for device applications in the near future. Magnetic skyrmions can be stabilized at room temperature in cobalt layers sandwiched between heavy metal layers due to engineering of the interfacial Dzyaloshinskii–Moriya interaction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1748-3387
1748-3395
DOI:10.1038/nnano.2015.313