Three dimensional elasto-plastic phase field simulation of martensitic transformation in polycrystal

The Phase Field Microelasticity model proposed by Khachaturyan is used to perform 3D simulation of Martensitic Transformation in polycrystalline materials using finite element method. The effect of plastic accommodation is investigated by using a time dependent equation for evolution of plastic defo...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 556; pp. 221 - 232
Main Authors Malik, Amer, Yeddu, Hemantha Kumar, Amberg, Gustav, Borgenstam, Annika, Ågren, John
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 30.10.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Phase Field Microelasticity model proposed by Khachaturyan is used to perform 3D simulation of Martensitic Transformation in polycrystalline materials using finite element method. The effect of plastic accommodation is investigated by using a time dependent equation for evolution of plastic deformation. In this study, elasto-plastic phase field simulations are performed in 2D and 3D for different boundary conditions to simulate FCC→BCT martensitic transformation in polycrystalline Fe-0.3%C alloy. The simulation results depict that the introduction of plastic accommodation reduces the stress intensity in the parent phase and hence causes an increase in volume fraction of the martensite. Simulation results also show that autocatalistic transformation initiates at the grain boundaries and grow into the parent phase. It has been concluded that stress distribution and the evolution of microstructure can be predicted with the current model in a polycrystal.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0921-5093
1873-4936
1873-4936
DOI:10.1016/j.msea.2012.06.080