Endogenous spatial pattern formation from two intersecting ecological mechanisms: the dynamic coexistence of two noxious invasive ant species in Puerto Rico

Endogenous (or autonomous, or emergent) spatial pattern formation is a subject transcending a variety of sciences. In ecology, there is growing interest in how spatial patterns can ‘emerge’ from internal system processes and simultaneously affect those very processes. A classic situation emerges whe...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 287; no. 1936; p. 20202214
Main Authors Vandermeer, John, Perfecto, Ivette
Format Journal Article
LanguageEnglish
Published England The Royal Society 14.10.2020
Subjects
Online AccessGet full text
ISSN0962-8452
1471-2954
1471-2954
DOI10.1098/rspb.2020.2214

Cover

Loading…
More Information
Summary:Endogenous (or autonomous, or emergent) spatial pattern formation is a subject transcending a variety of sciences. In ecology, there is growing interest in how spatial patterns can ‘emerge’ from internal system processes and simultaneously affect those very processes. A classic situation emerges when a predator's focus on a dominant competitor releases competitive pressure on a subdominant competitor, allowing coexistence of the two. If this idea is formulated spatially, two interesting consequences immediately arise. First, a spatial predator/prey system may take the form of a Turing instability, in which an activator (the dispersing prey population) is contained by a repressor (the more rapidly dispersing predator population) generating a spatial pattern of clusters of prey and predators, and second, an indirect intransitive loop (where A beats B beats C beats A) emerges from the simple fact that the system is spatial. Two common invasive ant species, Wasmannia auropunctata and Solenopsis invicta, and the parasitic phorid flies of S. invicta commonly coexist in Puerto Rico. Emergent spatial patterns generated by the combination of the Turing mechanism and the indirect intransitive loop are likely to be common here. This theoretical framework and the realities of the natural history in the field could explain both the long-term coexistence of these two species, and the highly variable pattern of their occurrence across a large landscape.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0962-8452
1471-2954
1471-2954
DOI:10.1098/rspb.2020.2214