Human Type 1 Diabetes Is Characterized by an Early, Marked, Sustained, and Islet-Selective Loss of Sympathetic Nerves

In humans, the glucagon response to moderate-to-marked insulin-induced hypoglycemia (IIH) is largely mediated by the autonomic nervous system. Because this glucagon response is impaired early in type 1 diabetes, we sought to determine if these patients, like animal models of autoimmune diabetes, hav...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 65; no. 8; pp. 2322 - 2330
Main Authors Mundinger, Thomas O., Mei, Qi, Foulis, Alan K., Fligner, Corinne L., Hull, Rebecca L., Taborsky, Gerald J.
Format Journal Article
LanguageEnglish
Published United States American Diabetes Association 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In humans, the glucagon response to moderate-to-marked insulin-induced hypoglycemia (IIH) is largely mediated by the autonomic nervous system. Because this glucagon response is impaired early in type 1 diabetes, we sought to determine if these patients, like animal models of autoimmune diabetes, have an early and severe loss of islet sympathetic nerves. We also tested whether this nerve loss is a permanent feature of type 1 diabetes, is islet-selective, and is not seen in type 2 diabetes. To do so, we quantified pancreatic islet and exocrine sympathetic nerve fiber area from autopsy samples of patients with type 1 or 2 diabetes and control subjects without diabetes. Our central finding is that patients with either very recent onset (<2 weeks) or long duration (>10 years) of type 1 diabetes have a severe loss of islet sympathetic nerves (Δ = −88% and Δ = −79%, respectively). In contrast, patients with type 2 diabetes lose no islet sympathetic nerves. There is no loss of exocrine sympathetic nerves in either type 1 or type 2 diabetes. We conclude that patients with type 1, but not type 2, diabetes have an early, marked, sustained, and islet-selective loss of sympathetic nerves, one that may impair their glucagon response to IIH.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0012-1797
1939-327X
1939-327X
DOI:10.2337/db16-0284