Life cycle assessment of flame retardants in an electronics application

PURPOSE: Flame retardants are added to plastics and textiles to save lives. However, certain brominated flame retardants (BFRs) form an environmental hazard and should be replaced by less harmful alternatives. In the recently completed European research project ENFIRO, we examined which alternatives...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of life cycle assessment Vol. 21; no. 2; pp. 146 - 161
Main Authors Jonkers, Niels, Krop, Hildo, van Ewijk, Harry, Leonards, Pim E. G
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:PURPOSE: Flame retardants are added to plastics and textiles to save lives. However, certain brominated flame retardants (BFRs) form an environmental hazard and should be replaced by less harmful alternatives. In the recently completed European research project ENFIRO, we examined which alternatives are most suitable from a technical and environmental perspective. This study describes the LCA comparison of BFRs and halogen-free flame retardants (HFFRs) in an electronics product, in order to compare their environmental impacts over the whole life cycle and identify where in the life cycle the main impacts occur. METHODS: This cradle to grave LCA used the complete life cycle of a laptop computer as the functional unit. Specific attention was paid to often neglected aspects, including emissions of flame retardants in all life cycle phases, emissions during accidental fire and improper waste treatment. New characterization factors for toxicity of flame retardants were calculated using USES-LCA2 and included in the impact assessment. RESULTS AND DISCUSSION: The largest differences in impact were found to occur in the waste phase due to an increased dioxin emission formed out of BFRs during improper waste treatment. Minor human toxicity and ecotoxicity impacts of FRs are present due to volatilization in the use phase. FR emissions during accidental fire vary with the FR’s mode of action (active in the gaseous or solid phase). The BFR scenario has a higher impact than the HFFR scenario due to a higher rate of smoke formation and a higher terrestrial ecotoxicity score. In most phases of the life cycle of FRs, fossil energy use related impact categories dominate the LCA score, i.e. climate change, fossil depletion, and particulate matter formation. Over the full life cycle, the BFR scenario has a slightly higher environmental impact than the HFFR scenario, mainly through the contribution of human toxicity in the waste phase. CONCLUSIONS: The study shows that for improvements of the life cycle environmental performance of FRs, the waste treatment phase is critical. Export and improper treatment of WEEE have the highest impact of all waste treatment options for both the BFR and HFFR scenarios, and efforts should be intensified to reduce the amount of WEEE ending up in this scenario. The study further shows that processes which are often ignored in LCA can give relevant insights into the environmental performance of a product. It is therefore recommended to broaden the scope and system boundaries of future LCA studies to include unofficial scenario options (specifically in the end-of-life phase) to provide a more complete description of the full environmental impact of a product’s life cycle and thereby contribute to relevant discussions in society and policy.
Bibliography:http://dx.doi.org/10.1007/s11367-015-0999-z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0948-3349
1614-7502
DOI:10.1007/s11367-015-0999-z