The Characterization of Surface Acoustic Wave Devices Based on AlN-Metal Structures

We report in this paper on the study of surface acoustic wave (SAW) resonators based on an AlN/titanium alloy (TC4) structure. The AlN/TC4 structure with different thicknesses of AlN films was simulated, and the acoustic propagating modes were discussed. Based on the simulation results, interdigital...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 16; no. 4; p. 526
Main Authors Shu, Lin, Peng, Bin, Li, Chuan, Gong, Dongdong, Yang, Zhengbing, Liu, Xingzhao, Zhang, Wanli
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.04.2016
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report in this paper on the study of surface acoustic wave (SAW) resonators based on an AlN/titanium alloy (TC4) structure. The AlN/TC4 structure with different thicknesses of AlN films was simulated, and the acoustic propagating modes were discussed. Based on the simulation results, interdigital transducers with a periodic length of 24 μm were patterned by lift-off photolithography techniques on the AlN films/TC4 structure, while the AlN film thickness was in the range 1.5-3.5 μm. The device performances in terms of quality factor (Q-factor) and electromechanical coupling coefficient (k²) were determined from the measure S11 parameters. The Q-factor and k² were strongly dependent not only on the normalized AlN film thickness but also on the full-width at half-maximum (FWHM) of AlN (002) peak. The dispersion curve of the SAW phase velocity was analyzed, and the experimental results showed a good agreement with simulations. The temperature behaviors of the devices were also presented and discussed. The prepared SAW resonators based on AlN/TC4 structure have potential applications in integrated micromechanical sensing systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s16040526