FGF-23 from erythroblasts promotes hematopoietic progenitor mobilization
Fibroblast growth factor 23 (FGF-23) hormone is produced by bone-embedded osteocytes and regulates phosphate homeostasis in kidneys. We found that administration of granulocyte colony-stimulating factor (G-CSF) to mice induced a rapid, substantial increase in FGF-23 messenger RNA in bone marrow (BM)...
Saved in:
Published in | Blood Vol. 137; no. 11; pp. 1457 - 1467 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fibroblast growth factor 23 (FGF-23) hormone is produced by bone-embedded osteocytes and regulates phosphate homeostasis in kidneys. We found that administration of granulocyte colony-stimulating factor (G-CSF) to mice induced a rapid, substantial increase in FGF-23 messenger RNA in bone marrow (BM) cells. This increase originated mainly from CD45−Ter119+CD71+ erythroblasts. FGF-23 protein in BM extracellular fluid was markedly increased during G-CSF–induced hematopoietic progenitor cell (HPC) mobilization, but remained stable in the blood, with no change in the phosphate level. Consistent with the BM hypoxia induced by G-CSF, low oxygen concentration induced FGF-23 release from human erythroblast HUDEP-2 cells in vitro. The efficient mobilization induced by G-CSF decreased drastically in both FGF-23−/− and chimeric mice with FGF-23 deficiency, only in hematopoietic cells, but increased in osteocyte-specific FGF-23−/− mice. This finding suggests that erythroblast-derived, but not bone-derived, FGF-23 is needed to release HPCs from BM into the circulation. Mechanistically, FGF-23 did not influence CXCL-12 binding to CXCR-4 on progenitors but interfered with their transwell migration toward CXCL-12, which was canceled by FGF receptor inhibitors. These results suggest that BM erythroblasts facilitate G-CSF–induced HPC mobilization via FGF-23 production as an intrinsic suppressor of chemoattraction.
•Bone marrow FGF-23 from erythroblasts promotes G-CSF–induced progenitor mobilization.•FGF-23 interferes with the chemoattraction of progenitors toward CXCL-12.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.2020007172 |