Type II/III Runx2/Cbfa1 is required for tooth germ development

Runx2/Cbfa1 is an essential transcription factor for osteoblast differentiation and bone formation. Runx2/Cbfa1 knockout mice showed both a complete lack of ossification and the developmental arrest of tooth germ. We here report Runx2/Cbfa1 isoform-type specific functional roles in the development o...

Full description

Saved in:
Bibliographic Details
Published inBone (New York, N.Y.) Vol. 38; no. 6; pp. 836 - 844
Main Authors Kobayashi, Ieyoshi, Kiyoshima, Tamotsu, Wada, Hiroko, Matsuo, Kou, Nonaka, Kazuaki, Honda, Jun-ya, Koyano, Kiyoshi, Sakai, Hidetaka
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2006
Subjects
Online AccessGet full text
ISSN8756-3282
1873-2763
DOI10.1016/j.bone.2005.10.026

Cover

More Information
Summary:Runx2/Cbfa1 is an essential transcription factor for osteoblast differentiation and bone formation. Runx2/Cbfa1 knockout mice showed both a complete lack of ossification and the developmental arrest of tooth germ. We here report Runx2/Cbfa1 isoform-type specific functional roles in the development of tooth germ by the administration of antisense phosphorothioate oligodioxynucleotides (S-ODNs) into cultured mouse mandibles. The administration of type II/III Runx2/Cbfa1 antisense S-ODNs into the culture media resulted in an arrest of tooth germ growth at the bud-like stage in cultured mandible taken from the 11-day-old embryos, while also causing the inhibition of the differentiation of odontogenic cells into ameloblast and odontoblast in cultured tooth germs taken from the 15-day-old embryos. The expression of dentin matrix protein 1, dentin sialophosphoprotein, amelogenin, and ameloblastin was shown to be markedly suppressed in cultured tooth germ by the semi-quantitative RT-PCR. Meanwhile, no developmental arrest of tooth germ, no inhibition of gene expression, or differentiation of odontogenic cells was observed in samples treated with the type I Runx2/Cbfa1 antisense S-ODNs. The same findings were also observed in either the control or the sense and random sequence S-ODNs-treated samples. These data indicate that the type II/III Runx2/Cbfa1 isoform is closely related to the development and differentiation of tooth germ.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:8756-3282
1873-2763
DOI:10.1016/j.bone.2005.10.026