Effect of atmospheric control during MA-HIP process on mechanical properties of oxide dispersion-strengthened Cu alloy

In this study, mechanical properties of Dispersion Strengthened (DS)-Cu-Al (aluminum) and Zr (zirconium) alloys, which were fabricated by an MA-HIP method, were investigated for application to the heat sink materials of fusion reactors. The effect of air exposure before the HIP process was studied u...

Full description

Saved in:
Bibliographic Details
Published inFusion engineering and design Vol. 124; pp. 1024 - 1027
Main Authors Noto, H., Yamada, T., Hishinuma, Y., Muroga, T.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, mechanical properties of Dispersion Strengthened (DS)-Cu-Al (aluminum) and Zr (zirconium) alloys, which were fabricated by an MA-HIP method, were investigated for application to the heat sink materials of fusion reactors. The effect of air exposure before the HIP process was studied using a NIFS-Sealing Device. Cu–Al specimen with air exposure before HIP was broken during wire-electrical discharge formation. Cu–Al specimen without air exposure exhibited high fracture strength, but without yielding. Cu–Zr specimen, both with and without the exposure, yielded and exhibits elongation. An increase in yield and tensile strength by approximately 61% and 45%, respectively, were obtained for Cu–Zr specimen by avoiding air exposure. The results showed that Cu–Zr specimen is less susceptible to the atmosphere of the MA-HIP process than Cu–Al.
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2017.04.062