Aluminene as highly hole-doped graphene

Monolayer structures made up of purely one kind of atom are fascinating. Many kinds of honeycomb systems including carbon, silicon, germanium, tin, phosphorus and arsenic have been shown to be stable. However, so far the structures are restricted to group-IV and V elements. In this work we systemati...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 17; no. 8; pp. 83014 - 83020
Main Authors Kamal, C, Chakrabarti, Aparna, Ezawa, Motohiko
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 06.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Monolayer structures made up of purely one kind of atom are fascinating. Many kinds of honeycomb systems including carbon, silicon, germanium, tin, phosphorus and arsenic have been shown to be stable. However, so far the structures are restricted to group-IV and V elements. In this work we systematically investigate the stability of monolayer structures made up of aluminium, in four different geometric configurations (planar, buckled, puckered and triangular), by employing density functional theory-based electronic structure calculation. Our results on cohesive energy and phonon dispersion predict that only the planar honeycomb structure made up of aluminium is stable. We call it 'aluminene' according to the standard naming convention. It is a metal. Results of electronic band structure suggest that it may be regarded as a highly hole-doped graphene. We also present the tight-binding model and the Dirac theory to discuss the electronic properties of aluminene.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/17/8/083014