Identification of TRPV1-Inhibitory Peptides from Takifugu fasciatus Skin Hydrolysate and Their Skin-Soothing Mechanisms

Skin sensitivity is increasingly prevalent, necessitating new therapeutic agents. This study screened multifunctional peptides from Takifugu fasciatus skin for transient receptor potential vanilloid 1 (TRPV1)-inhibitory and anti-inflammatory activities and investigated their mechanisms in alleviatin...

Full description

Saved in:
Bibliographic Details
Published inMarine drugs Vol. 23; no. 5; p. 196
Main Authors Tang, Haiyan, Chen, Bei, Zhang, Dong, Wu, Ruowen, Qiao, Kun, Chen, Kang, Su, Yongchang, Cai, Shuilin, Xu, Min, Liu, Shuji, Liu, Zhiyu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.04.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Skin sensitivity is increasingly prevalent, necessitating new therapeutic agents. This study screened multifunctional peptides from Takifugu fasciatus skin for transient receptor potential vanilloid 1 (TRPV1)-inhibitory and anti-inflammatory activities and investigated their mechanisms in alleviating sensitive skin (SS). A low-molecular-weight hydrolysate was prepared through enzymatic hydrolysis of T. fasciatus skin, followed by ultrafiltration, with subsequent peptide identification performed using nano-HPLC-MS/MS and molecular docking-based virtual screening. Among 20 TRPV1-antagonistic peptides (TFTIPs), QFF (T10), LDIF (T14), and FFR (T18) exhibited potent anti-inflammatory effects in (lipopolysaccharide) LPS-induced RAW 264.7 macrophages. T14 showed the strongest TRPV1 inhibition; T14 (200 μM) inhibited Ca2⁺ in capsaicin-stimulated HaCaT cells by 73.1% and showed stable binding in molecular docking, warranting further analysis. Mechanistic studies revealed that T14 suppressed NF-κB signaling by downregulating p65 protein expression, thereby reducing pro-inflammatory cytokine secretion (G-CSF, GM-CSF, ICAM-1, IL-6, TNF-α) in RAW 264.7 cells. Additionally, T14 (400 μM) inhibited ET-1 in LPS-stimulated endothelial cells by 75.0%; ICAM-1 reached 49.0%. Network pharmacology predicted STAT3, MAPK3, SPHK1, and CTSB as key targets mediating T14’s effects. These study findings suggest that T14 may be a promising candidate for skincare applications targeting SS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:1660-3397
1660-3397
DOI:10.3390/md23050196