Oxidation and Induration Characteristics of Pellets Made from Western Australian Ultrafine Magnetite Concentrates and Its Utilization Strategy
Western Australian magnetite concentrates normally have ultrafine granularity and much higher specific surface areas than Chinese magnetite concentrates owing to the significant pre-grinding and beneficiation for saleable iron grade. Such characteristics will inevitably affect the subsequent pelleti...
Saved in:
Published in | Journal of iron and steel research, international Vol. 23; no. 9; pp. 924 - 932 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier Ltd
01.09.2016
Springer Singapore |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Western Australian magnetite concentrates normally have ultrafine granularity and much higher specific surface areas than Chinese magnetite concentrates owing to the significant pre-grinding and beneficiation for saleable iron grade. Such characteristics will inevitably affect the subsequent pelletization process. However, very few investi- gations have been done before. Thus, the oxidation and induration characteristics of pellet made from a Western Aus- tralian ultrafine magnetite concentrate were revealed by conducting routine preheating-roasting tests in an electric tube furnace and investigating the microstructure of fired pellets under an optical microscope in comparison with that of pellets made from typical Chinese magnetite concentrate. The liquidus regions of CaO-SiO2-Fe2O3 and CaO-SiO2- Al2O3 ternary systems in air at various temperatures were calculated by FactSage software to explain the importance of liquid phase in the consolidation of fired pellets. The results show that pellet made from ultrafine magnetite con- centrate possesses better oxidability and preheating performance than that made from Chinese magnetite concentrate. However, it has inferior roasting performance, usually requiring conditions of roasting at 1280℃ for at least 30 rain to acquire sufficiently high compressive strength, which are attributed to higher temperature sensitivity caused by its smaller particle size and less formation of liquid phase because of low impurities like CaO and Al2O3 in raw materials. Correspondingly, its roasting performanee can be significantly improved by blending with Chinese magnetite concen- trates or increasing the pellet basicity (WCaO/WSiO2). By comprehensive evaluation, blending with Chinese iron ore concentrates is an appropriate way to utilize Western Australia ultrafine magnetite concentrates. |
---|---|
Bibliography: | 11-3678/TF oxidation; induration characteristic; ultrafine magnetite concentrate; iron ore; pellet; metallurgical performance Western Australian magnetite concentrates normally have ultrafine granularity and much higher specific surface areas than Chinese magnetite concentrates owing to the significant pre-grinding and beneficiation for saleable iron grade. Such characteristics will inevitably affect the subsequent pelletization process. However, very few investi- gations have been done before. Thus, the oxidation and induration characteristics of pellet made from a Western Aus- tralian ultrafine magnetite concentrate were revealed by conducting routine preheating-roasting tests in an electric tube furnace and investigating the microstructure of fired pellets under an optical microscope in comparison with that of pellets made from typical Chinese magnetite concentrate. The liquidus regions of CaO-SiO2-Fe2O3 and CaO-SiO2- Al2O3 ternary systems in air at various temperatures were calculated by FactSage software to explain the importance of liquid phase in the consolidation of fired pellets. The results show that pellet made from ultrafine magnetite con- centrate possesses better oxidability and preheating performance than that made from Chinese magnetite concentrate. However, it has inferior roasting performance, usually requiring conditions of roasting at 1280℃ for at least 30 rain to acquire sufficiently high compressive strength, which are attributed to higher temperature sensitivity caused by its smaller particle size and less formation of liquid phase because of low impurities like CaO and Al2O3 in raw materials. Correspondingly, its roasting performanee can be significantly improved by blending with Chinese magnetite concen- trates or increasing the pellet basicity (WCaO/WSiO2). By comprehensive evaluation, blending with Chinese iron ore concentrates is an appropriate way to utilize Western Australia ultrafine magnetite concentrates. |
ISSN: | 1006-706X 2210-3988 2210-3988 |
DOI: | 10.1016/S1006-706X(16)30140-6 |