A Neural Network Model of the Eriksen Task: Reduction, Analysis, and Data Fitting

We analyze a neural network model of the Eriksen task: a two-alternative forced-choice task in which subjects must correctly identify a central stimulus and disregard flankers that may or may not be compatible with it. We linearize and decouple the model, deriving a reduced drift-diffusion process w...

Full description

Saved in:
Bibliographic Details
Published inNeural computation Vol. 20; no. 2; pp. 345 - 373
Main Authors Liu, Yuan Sophie, Holmes, Philip, Cohen, Jonathan D.
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.02.2008
MIT Press Journals, The
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We analyze a neural network model of the Eriksen task: a two-alternative forced-choice task in which subjects must correctly identify a central stimulus and disregard flankers that may or may not be compatible with it. We linearize and decouple the model, deriving a reduced drift-diffusion process with variable drift rate that describes the accumulation of net evidence in favor of either alternative, and we use this to analytically describe how accuracy and response time data depend on model parameters. Such analyses both assist parameter tuning in network models and suggest explanations of changing drift rates in terms of attention. We compare our results with numerical simulations of the full nonlinear model and with empirical data and show good fits to both with fewer parameters.
Bibliography:February, 2008
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
yuanliu@princeton.edu, pholmes@math.princeton.edu, jdc@princeton.edu.
ISSN:0899-7667
1530-888X
DOI:10.1162/neco.2007.08-06-313