A Neural Network Model of the Eriksen Task: Reduction, Analysis, and Data Fitting
We analyze a neural network model of the Eriksen task: a two-alternative forced-choice task in which subjects must correctly identify a central stimulus and disregard flankers that may or may not be compatible with it. We linearize and decouple the model, deriving a reduced drift-diffusion process w...
Saved in:
Published in | Neural computation Vol. 20; no. 2; pp. 345 - 373 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
01.02.2008
MIT Press Journals, The |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We analyze a neural network model of the Eriksen task: a two-alternative forced-choice task in which subjects must correctly identify a central stimulus and disregard flankers that may or may not be compatible with it. We linearize and decouple the model, deriving a reduced drift-diffusion process with variable drift rate that describes the accumulation of net evidence in favor of either alternative, and we use this to analytically describe how accuracy and response time data depend on model parameters. Such analyses both assist parameter tuning in network models and suggest explanations of changing drift rates in terms of attention. We compare our results with numerical simulations of the full nonlinear model and with empirical data and show good fits to both with fewer parameters. |
---|---|
Bibliography: | February, 2008 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 yuanliu@princeton.edu, pholmes@math.princeton.edu, jdc@princeton.edu. |
ISSN: | 0899-7667 1530-888X |
DOI: | 10.1162/neco.2007.08-06-313 |