Anoxygenic phototrophic arsenite oxidation by a Rhodobacter strain

Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic‐replete ecosystems, it remains unknown whether this light‐dependent...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 25; no. 8; pp. 1538 - 1548
Main Authors Wu, Yi‐Fei, Chen, Jian, Xie, Wan‐Ying, Peng, Chao, Tang, Shi‐Tong, Rosen, Barry P., Kappler, Andreas, Zhang, Jun, Zhao, Fang‐Jie
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.08.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic‐replete ecosystems, it remains unknown whether this light‐dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic‐contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically. Genome sequencing revealed an As(III)‐oxidizing gene cluster (aioXSRBA) encoding an As(III) oxidase. Functional analyses showed that As(III) oxidation under anoxic phototrophic conditions correlated with transcription of the large subunit of the As(III) oxidase aioA gene. Furthermore, the non‐As(III) oxidizer Rhodobacter capsulatus SB1003 heterologously expressing aioBA from strain CZR27 was able to oxidize As(III), indicating that aioBA was responsible for the observed As(III) oxidation in strain CZR27. Our study provides evidence for the presence of anaerobic photosynthesis‐coupled As(III) oxidation in paddy soils, highlighting the importance of light‐dependent, microbe‐mediated arsenic redox changes in paddy arsenic biogeochemistry.
AbstractList Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic‐replete ecosystems, it remains unknown whether this light‐dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic‐contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically. Genome sequencing revealed an As(III)‐oxidizing gene cluster (aioXSRBA) encoding an As(III) oxidase. Functional analyses showed that As(III) oxidation under anoxic phototrophic conditions correlated with transcription of the large subunit of the As(III) oxidase aioA gene. Furthermore, the non‐As(III) oxidizer Rhodobacter capsulatus SB1003 heterologously expressing aioBA from strain CZR27 was able to oxidize As(III), indicating that aioBA was responsible for the observed As(III) oxidation in strain CZR27. Our study provides evidence for the presence of anaerobic photosynthesis‐coupled As(III) oxidation in paddy soils, highlighting the importance of light‐dependent, microbe‐mediated arsenic redox changes in paddy arsenic biogeochemistry.
Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic‐replete ecosystems, it remains unknown whether this light‐dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic‐contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically. Genome sequencing revealed an As(III)‐oxidizing gene cluster ( aioXSRBA ) encoding an As(III) oxidase. Functional analyses showed that As(III) oxidation under anoxic phototrophic conditions correlated with transcription of the large subunit of the As(III) oxidase aioA gene. Furthermore, the non‐As(III) oxidizer Rhodobacter capsulatus SB1003 heterologously expressing aioBA from strain CZR27 was able to oxidize As(III), indicating that aioBA was responsible for the observed As(III) oxidation in strain CZR27. Our study provides evidence for the presence of anaerobic photosynthesis‐coupled As(III) oxidation in paddy soils, highlighting the importance of light‐dependent, microbe‐mediated arsenic redox changes in paddy arsenic biogeochemistry.
Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic-replete ecosystems, it remains unknown whether this light-dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic-contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically. Genome sequencing revealed an As(III)-oxidizing gene cluster (aioXSRBA) encoding an As(III) oxidase. Functional analyses showed that As(III) oxidation under anoxic phototrophic conditions correlated with transcription of the large subunit of the As(III) oxidase aioA gene. Furthermore, the non-As(III) oxidizer Rhodobacter capsulatus SB1003 heterologously expressing aioBA from strain CZR27 was able to oxidize As(III), indicating that aioBA was responsible for the observed As(III) oxidation in strain CZR27. Our study provides evidence for the presence of anaerobic photosynthesis-coupled As(III) oxidation in paddy soils, highlighting the importance of light-dependent, microbe-mediated arsenic redox changes in paddy arsenic biogeochemistry.Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic-replete ecosystems, it remains unknown whether this light-dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic-contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically. Genome sequencing revealed an As(III)-oxidizing gene cluster (aioXSRBA) encoding an As(III) oxidase. Functional analyses showed that As(III) oxidation under anoxic phototrophic conditions correlated with transcription of the large subunit of the As(III) oxidase aioA gene. Furthermore, the non-As(III) oxidizer Rhodobacter capsulatus SB1003 heterologously expressing aioBA from strain CZR27 was able to oxidize As(III), indicating that aioBA was responsible for the observed As(III) oxidation in strain CZR27. Our study provides evidence for the presence of anaerobic photosynthesis-coupled As(III) oxidation in paddy soils, highlighting the importance of light-dependent, microbe-mediated arsenic redox changes in paddy arsenic biogeochemistry.
Author Rosen, Barry P.
Kappler, Andreas
Zhao, Fang‐Jie
Chen, Jian
Peng, Chao
Tang, Shi‐Tong
Wu, Yi‐Fei
Zhang, Jun
Xie, Wan‐Ying
AuthorAffiliation 4 Geomicrobiology, Department of Geoscience, University of Tuebingen, Tuebingen 72076, Germany
1 Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
2 Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
3 College of Life Sciences, China West Normal University, Nanchong, China
5 Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen 72076, Germany
AuthorAffiliation_xml – name: 3 College of Life Sciences, China West Normal University, Nanchong, China
– name: 4 Geomicrobiology, Department of Geoscience, University of Tuebingen, Tuebingen 72076, Germany
– name: 5 Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen 72076, Germany
– name: 1 Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
– name: 2 Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
Author_xml – sequence: 1
  givenname: Yi‐Fei
  surname: Wu
  fullname: Wu, Yi‐Fei
  organization: Nanjing Agricultural University
– sequence: 2
  givenname: Jian
  surname: Chen
  fullname: Chen, Jian
  organization: Florida International University
– sequence: 3
  givenname: Wan‐Ying
  surname: Xie
  fullname: Xie, Wan‐Ying
  organization: Nanjing Agricultural University
– sequence: 4
  givenname: Chao
  surname: Peng
  fullname: Peng, Chao
  organization: China West Normal University
– sequence: 5
  givenname: Shi‐Tong
  surname: Tang
  fullname: Tang, Shi‐Tong
  organization: Nanjing Agricultural University
– sequence: 6
  givenname: Barry P.
  surname: Rosen
  fullname: Rosen, Barry P.
  organization: Florida International University
– sequence: 7
  givenname: Andreas
  surname: Kappler
  fullname: Kappler, Andreas
  organization: Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection
– sequence: 8
  givenname: Jun
  orcidid: 0000-0003-1965-7224
  surname: Zhang
  fullname: Zhang, Jun
  email: zhangjun1208@njau.edu.cn
  organization: Nanjing Agricultural University
– sequence: 9
  givenname: Fang‐Jie
  orcidid: 0000-0002-0164-169X
  surname: Zhao
  fullname: Zhao, Fang‐Jie
  organization: Nanjing Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36978205$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PGzEQhq2KqnyUMze0EhcuKWPvru09IYhoi5QKCZWz5fXOJo42drA3QP49DvlQi4TwxZ7xM-_Y8x6SPecdEnJC4QdN64IWnA1YxVLIcwlfyMEus7c7U7ZPDmOcAlCRC_hG9nNeCcmgPCDXV86_LMforMnmE9_7Pvj5JAU6xJTsMfMvttG99S6rl5nO7ie-8bU2PYYs9kFb9518bXUX8XizH5GHnzd_h78Ho7tft8Or0cCUQGGgm8ponpea1bzAphXSMKgkmkJywWrUNWjKqjov2gZSojWSV5wi5NgiIM2PyOVad76oZ9gYdKl9p-bBznRYKq-t-v_G2Yka-ydFgQsOgieF841C8I8LjL2a2Wiw67RDv4iKSSk4SzT7HBUVK4GBLBJ69g6d-kVwaRRJsChKUfICEnX67-t3z95akYByDZjgYwzYKmP7t8GvptylX6iV5WplqloZrN4sT3UX7-q20h9XbDo92w6Xn-Hq5s_tuu4VtI27oQ
CitedBy_id crossref_primary_10_1128_mra_00392_24
crossref_primary_10_1007_s11274_024_04001_2
crossref_primary_10_1016_j_scitotenv_2024_175500
crossref_primary_10_1111_1462_2920_16542
Cites_doi 10.1128/JB.01395-06
10.1128/AEM.02851-07
10.1128/genomeA.01139-16
10.1126/science.1160799
10.1007/s11104-009-0074-2
10.1021/acs.est.9b06702
10.1111/1462-2920.13509
10.1021/es506097c
10.1146/annurev-arplant-042809-112152
10.1111/j.1462-2920.2010.02360.x
10.1021/acs.est.6b06255
10.1128/JB.186.6.1614-1619.2004
10.1021/es403877s
10.1126/science.1072375
10.1021/es501510v
10.1021/es900978h
10.1128/AEM.03104-09
10.1016/j.chemosphere.2007.04.019
10.1128/AEM.00545-10
10.1093/molbev/mst197
10.1007/s00248-007-9320-4
10.1038/nature02638
10.1093/femsre/fuv050
10.1128/AEM.00734-10
10.1073/pnas.1834303100
10.1111/j.1462-2920.2006.01215.x
10.1111/j.1469-8137.2008.02758.x
10.1016/j.tplants.2004.07.002
10.1016/j.watres.2021.117721
10.1038/ismej.2007.115
10.1111/j.1462-2920.2011.02462.x
10.1111/j.1462-2920.2011.02672.x
10.1006/meth.2001.1262
10.1128/jb.126.2.619-629.1976
10.1126/science.1081903
10.1021/cr00094a002
10.1128/AEM.66.1.92-97.2000
10.1128/aem.60.12.4517-4526.1994
10.1016/j.envpol.2010.12.016
10.1016/0378-1119(95)00584-1
10.1128/AEM.02798-08
10.1146/annurev-earth-060313-054942
10.1128/JB.00244-10
10.1126/science.1076978
10.1007/BF00447139
10.1128/JB.188.3.1081-1088.2006
10.1021/es070298u
ContentType Journal Article
Copyright 2023 Applied Microbiology International and John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 Applied Microbiology International and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
5PM
DOI 10.1111/1462-2920.16380
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 1548
ExternalDocumentID PMC10676076
36978205
10_1111_1462_2920_16380
EMI16380
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 390838134
– fundername: Foundation for the National Institutes of Health
  funderid: R35 GM136211
– fundername: National Natural Science Foundation of China
  funderid: 31970108; 41571312
– fundername: NIGMS NIH HHS
  grantid: R35 GM136211
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5010-ad9ca635a2b64edf78c2098ec48672beab0a129b34fd072bfc86961e03efe0e13
IEDL.DBID DR2
ISSN 1462-2912
1462-2920
IngestDate Thu Aug 21 18:33:53 EDT 2025
Fri Jul 11 18:35:47 EDT 2025
Thu Jul 10 22:35:04 EDT 2025
Fri Jul 25 12:17:40 EDT 2025
Mon Jul 21 06:04:14 EDT 2025
Tue Jul 01 04:00:51 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Wed Jan 22 16:18:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2023 Applied Microbiology International and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5010-ad9ca635a2b64edf78c2098ec48672beab0a129b34fd072bfc86961e03efe0e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AUTHOR CONTRIBUTIONS
Yi-Fei Wu: Conceptualization (equal); data curation (equal); writing – original draft (equal). Jian Chen: Methodology (equal). Wan-Ying Xie: Data curation (equal); writing – review and editing (equal). Chao Peng: Methodology (equal); resources (equal). Shi-Tong Tang: Investigation (equal); methodology (equal). Barry P. Rosen: Conceptualization (equal); data curation (equal); funding acquisition (equal); writing – review and editing (equal). Andreas Kappler: Resources (equal); writing – review and editing (equal). Jun Zhang: Methodology (equal); resources (equal). Fangjie Zhao: Resources (equal); supervision (equal); validation (equal).
ORCID 0000-0003-1965-7224
0000-0002-0164-169X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10676076
PMID 36978205
PQID 2844575640
PQPubID 1066360
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10676076
proquest_miscellaneous_2887620672
proquest_miscellaneous_2792502084
proquest_journals_2844575640
pubmed_primary_36978205
crossref_citationtrail_10_1111_1462_2920_16380
crossref_primary_10_1111_1462_2920_16380
wiley_primary_10_1111_1462_2920_16380_EMI16380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Oxford
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 1989; 3
2011; 159
2007; 189
2010; 76
2004; 186
1989; 89
2009; 43
2002; 296
2011
2010; 328
2009; 182
1987; 4
2000; 66
2002; 298
1976; 126
2004; 9
2021; 206
2014; 48
2011; 13
2008; 74
2002
1991
2020; 54
2008; 321
2012; 14
2008; 2
1994; 60
2001; 25
2010; 61
2014; 42
2016; 4
2017; 51
2004; 430
2015; 49
2009; 75
2013; 30
2007; 9
2016; 40
2017; 19
1995; 166
2010; 192
2007; 41
1975; 105
2003; 300
2003; 100
2006; 188
2007; 69
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Ehrlich H.L. (e_1_2_9_10_1) 2002
e_1_2_9_30_1
Sambrook J. (e_1_2_9_34_1) 2011
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
Saitou N. (e_1_2_9_32_1) 1987; 4
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Pfennig N. (e_1_2_9_27_1) 1989
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 19
  start-page: 130
  year: 2017
  end-page: 141
  article-title: The genetic basis of anoxygenic photosynthetic arsenite oxidation
  publication-title: Environmental Microbiology
– volume: 186
  start-page: 1614
  year: 2004
  end-page: 1619
  article-title: Molybdenum‐containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT‐26
  publication-title: Journal of Bacteriology
– start-page: 313
  year: 2002
  end-page: 328
– volume: 40
  start-page: 299
  year: 2016
  end-page: 322
  article-title: The microbial genomics of arsenic
  publication-title: FEMS Microbiology Reviews
– volume: 296
  start-page: 2143
  year: 2002
  end-page: 2145
  article-title: Public health—worldwide occurrences of arsenic in ground water
  publication-title: Science
– volume: 13
  start-page: 589
  year: 2011
  end-page: 603
  article-title: Culturable and species are abundant in estuarine turbidity maxima of the Columbia River
  publication-title: Environmental Microbiology
– volume: 321
  start-page: 967
  year: 2008
  end-page: 970
  article-title: Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from mono Lake, California
  publication-title: Science
– volume: 48
  start-page: 9668
  year: 2014
  end-page: 9674
  article-title: Arsenite oxidation by the phyllosphere bacterial community associated with
  publication-title: Environmental Science & Technology
– volume: 48
  start-page: 1001
  year: 2014
  end-page: 1007
  article-title: Arsenic uptake by rice is influenced by microbe‐mediated arsenic redox changes in the rhizosphere
  publication-title: Environmental Science & Technology
– volume: 2
  start-page: 340
  year: 2008
  end-page: 343
  article-title: Arsenite‐dependent photoautotrophy by an ‐dominated consortium
  publication-title: ISME Journal
– volume: 69
  start-page: 493
  year: 2007
  end-page: 499
  article-title: Arsenic accumulation in duckweed ( L.): a good option for phytoremediation
  publication-title: Chemosphere
– volume: 182
  start-page: 421
  year: 2009
  end-page: 428
  article-title: Arsenic uptake and speciation in the rootless duckweed
  publication-title: The New Phytologist
– volume: 298
  start-page: 1602
  year: 2002
  end-page: 1606
  article-title: Arsenic mobility and groundwater extraction in Bangladesh
  publication-title: Science
– volume: 42
  start-page: 443
  year: 2014
  end-page: 467
  article-title: Earth abides arsenic biotransformations
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 61
  start-page: 535
  year: 2010
  end-page: 559
  article-title: Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies
  publication-title: Annual Review of Plant Biology
– volume: 430
  start-page: 68
  year: 2004
  end-page: 71
  article-title: Role of metal‐reducing bacteria in arsenic release from Bengal delta sediments
  publication-title: Nature
– volume: 189
  start-page: 1774
  year: 2007
  end-page: 1782
  article-title: The operon from strain SW2 promotes phototrophic Fe(II) oxidation in SB1003
  publication-title: Journal of Bacteriology
– volume: 166
  start-page: 175
  year: 1995
  end-page: 176
  article-title: Four new derivatives of the broad‐host‐range cloning vector pBBR1MCS, carrying different antibiotic‐resistance cassettes
  publication-title: Gene
– volume: 41
  start-page: 5960
  year: 2007
  end-page: 5966
  article-title: Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 1 Irrigation water
  publication-title: Environmental Science & Technology
– volume: 54
  start-page: 4036
  year: 2020
  end-page: 4045
  article-title: Nitrite accumulation is required for microbial anaerobic iron oxidation, but not for arsenite oxidation, in two heterotrophic denitrifiers
  publication-title: Environmental Science & Technology
– volume: 188
  start-page: 1081
  year: 2006
  end-page: 1088
  article-title: Complex regulation of arsenite oxidation in
  publication-title: Journal of Bacteriology
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2 method
  publication-title: Methods
– volume: 76
  start-page: 6804
  year: 2010
  end-page: 6811
  article-title: Anaerobic oxidation of arsenite linked to chlorate reduction
  publication-title: Applied and Environmental Microbiology
– volume: 14
  start-page: 1624
  year: 2012
  end-page: 1634
  article-title: A periplasmic arsenite‐binding protein involved in regulating arsenite oxidation
  publication-title: Environmental Microbiology
– volume: 9
  start-page: 934
  year: 2007
  end-page: 943
  article-title: Detection, diversity and expression of aerobic bacterial arsenite oxidase genes
  publication-title: Environmental Microbiology
– start-page: 115
  year: 1991
  end-page: 175
– volume: 206
  year: 2021
  article-title: Photochemical characterization of paddy water during rice cultivation: formation of reactive intermediates for As(III) oxidation
  publication-title: Water Research
– volume: 89
  start-page: 713
  year: 1989
  end-page: 764
  article-title: Arsenic speciation in the environment
  publication-title: Chemical Reviews
– volume: 4
  start-page: 406
  year: 1987
  end-page: 425
  article-title: The neighbor‐joining method: a new method for reconstructing phylogenetic trees
  publication-title: Molecular Biology and Evolution
– volume: 76
  start-page: 4633
  year: 2010
  end-page: 4639
  article-title: Coupled arsenotrophy in a hot spring photosynthetic biofilm at mono Lake, California
  publication-title: Applied and Environmental Microbiology
– volume: 49
  start-page: 5956
  year: 2015
  end-page: 5964
  article-title: Anaerobic arsenite oxidation by an autotrophic arsenite‐oxidizing bacterium from an arsenic‐contaminated paddy soil
  publication-title: Environmental Science & Technology
– volume: 9
  start-page: 415
  year: 2004
  end-page: 417
  article-title: Arsenic in rice—understanding a new disaster for South‐East Asia
  publication-title: Trends in Plant Science
– volume: 30
  start-page: 2725
  year: 2013
  end-page: 2729
  article-title: MEGA6: molecular evolutionary genetics analysis version 6.0
  publication-title: Molecular Biology and Evolution
– volume: 60
  start-page: 4517
  year: 1994
  end-page: 4526
  article-title: Anaerobic oxidation of ferrous iron by purple bacteria, a new‐type of phototrophic metabolism
  publication-title: Applied and Environmental Microbiology
– volume: 13
  start-page: 1561
  year: 2011
  end-page: 1576
  article-title: Analysis of in situ manganese(II) oxidation in the Columbia River and offshore plume: linking Aurantimonas and the associated microbial community to an active biogeochemical cycle
  publication-title: Environmental Microbiology
– volume: 126
  start-page: 619
  year: 1976
  end-page: 629
  article-title: Map of genes for carotenoid and bacteriochlorophyll biosynthesis in
  publication-title: Journal of Bacteriology
– volume: 51
  start-page: 4377
  year: 2017
  end-page: 4386
  article-title: Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils
  publication-title: Environmental Science & Technology
– volume: 4
  start-page: e01139
  year: 2016
  end-page: 16
  article-title: Genome sequence of the photoarsenotrophic bacterium Ectothiorhodospira sp. strain BSL‐9, isolated from a hypersaline alkaline arsenic‐rich extreme environment
  publication-title: Genome Announcements
– volume: 100
  start-page: 10983
  year: 2003
  end-page: 10988
  article-title: Genetic identification of a respiratory arsenate reductase
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 300
  start-page: 939
  year: 2003
  end-page: 944
  article-title: The ecology of arsenic
  publication-title: Science
– volume: 328
  start-page: 27
  year: 2010
  end-page: 34
  article-title: Rice is more efficient in arsenite uptake and translocation than wheat and barley
  publication-title: Plant and Soil
– volume: 76
  start-page: 4566
  year: 2010
  end-page: 4570
  article-title: Population structure and abundance of arsenite‐oxidizing bacteria along an arsenic pollution gradient in waters of the upper isle River Basin, France
  publication-title: Applied and Environmental Microbiology
– volume: 192
  start-page: 3755
  year: 2010
  end-page: 3762
  article-title: Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite‐oxidizing bacterium strain MLHE‐1
  publication-title: Journal of Bacteriology
– volume: 75
  start-page: 5141
  year: 2009
  end-page: 5147
  article-title: Identification of an system that requires cytochrome c in the highly arsenic‐resistant bacterium SCII24
  publication-title: Applied and Environmental Microbiology
– volume: 43
  start-page: 6585
  year: 2009
  end-page: 6591
  article-title: Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments
  publication-title: Environmental Science & Technology
– volume: 3
  start-page: 1635
  year: 1989
  end-page: 1709
– volume: 66
  start-page: 92
  year: 2000
  end-page: 97
  article-title: A new chemolithoautotrophic arsenite‐oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies
  publication-title: Applied and Environmental Microbiology
– volume: 74
  start-page: 4567
  year: 2008
  end-page: 4573
  article-title: Diversity surveys and evolutionary relationships of genes in aerobic arsenite‐oxidizing bacteria
  publication-title: Applied and Environmental Microbiology
– volume: 159
  start-page: 947
  year: 2011
  end-page: 953
  article-title: The dynamics of arsenic in four paddy fields in the Bengal delta
  publication-title: Environmental Pollution
– volume: 105
  start-page: 207
  year: 1975
  end-page: 216
  article-title: Characterization of capsulata
  publication-title: Archives of Microbiology
– ident: e_1_2_9_7_1
  doi: 10.1128/JB.01395-06
– ident: e_1_2_9_29_1
  doi: 10.1128/AEM.02851-07
– ident: e_1_2_9_13_1
  doi: 10.1128/genomeA.01139-16
– ident: e_1_2_9_20_1
  doi: 10.1126/science.1160799
– ident: e_1_2_9_38_1
  doi: 10.1007/s11104-009-0074-2
– ident: e_1_2_9_47_1
  doi: 10.1021/acs.est.9b06702
– ident: e_1_2_9_12_1
  doi: 10.1111/1462-2920.13509
– ident: e_1_2_9_49_1
  doi: 10.1021/es506097c
– ident: e_1_2_9_51_1
  doi: 10.1146/annurev-arplant-042809-112152
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1462-2920.2010.02360.x
– ident: e_1_2_9_48_1
  doi: 10.1021/acs.est.6b06255
– start-page: 1635
  volume-title: Bergey's manual of systematic bacteriology
  year: 1989
  ident: e_1_2_9_27_1
– ident: e_1_2_9_36_1
  doi: 10.1128/JB.186.6.1614-1619.2004
– ident: e_1_2_9_17_1
  doi: 10.1021/es403877s
– ident: e_1_2_9_25_1
  doi: 10.1126/science.1072375
– ident: e_1_2_9_43_1
  doi: 10.1021/es501510v
– ident: e_1_2_9_39_1
  doi: 10.1021/es900978h
– ident: e_1_2_9_28_1
  doi: 10.1128/AEM.03104-09
– ident: e_1_2_9_30_1
  doi: 10.1016/j.chemosphere.2007.04.019
– ident: e_1_2_9_14_1
  doi: 10.1128/AEM.00545-10
– ident: e_1_2_9_41_1
  doi: 10.1093/molbev/mst197
– ident: e_1_2_9_21_1
  doi: 10.1007/s00248-007-9320-4
– ident: e_1_2_9_16_1
  doi: 10.1038/nature02638
– ident: e_1_2_9_3_1
  doi: 10.1093/femsre/fuv050
– ident: e_1_2_9_40_1
  doi: 10.1128/AEM.00734-10
– ident: e_1_2_9_33_1
  doi: 10.1073/pnas.1834303100
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1462-2920.2006.01215.x
– ident: e_1_2_9_50_1
  doi: 10.1111/j.1469-8137.2008.02758.x
– ident: e_1_2_9_24_1
  doi: 10.1016/j.tplants.2004.07.002
– ident: e_1_2_9_46_1
  doi: 10.1016/j.watres.2021.117721
– ident: e_1_2_9_6_1
  doi: 10.1038/ismej.2007.115
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1462-2920.2011.02462.x
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1462-2920.2011.02672.x
– volume-title: Molecular cloning: a laboratory manual
  year: 2011
  ident: e_1_2_9_34_1
– ident: e_1_2_9_23_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_9_44_1
  doi: 10.1128/jb.126.2.619-629.1976
– ident: e_1_2_9_26_1
  doi: 10.1126/science.1081903
– ident: e_1_2_9_8_1
  doi: 10.1021/cr00094a002
– ident: e_1_2_9_35_1
  doi: 10.1128/AEM.66.1.92-97.2000
– ident: e_1_2_9_9_1
  doi: 10.1128/aem.60.12.4517-4526.1994
– ident: e_1_2_9_37_1
  doi: 10.1016/j.envpol.2010.12.016
– ident: e_1_2_9_19_1
  doi: 10.1016/0378-1119(95)00584-1
– ident: e_1_2_9_5_1
  doi: 10.1128/AEM.02798-08
– ident: e_1_2_9_52_1
  doi: 10.1146/annurev-earth-060313-054942
– ident: e_1_2_9_45_1
  doi: 10.1128/JB.00244-10
– ident: e_1_2_9_11_1
  doi: 10.1126/science.1076978
– start-page: 313
  volume-title: Environmental chemistry of arsenic
  year: 2002
  ident: e_1_2_9_10_1
– ident: e_1_2_9_42_1
  doi: 10.1007/BF00447139
– volume: 4
  start-page: 406
  year: 1987
  ident: e_1_2_9_32_1
  article-title: The neighbor‐joining method: a new method for reconstructing phylogenetic trees
  publication-title: Molecular Biology and Evolution
– ident: e_1_2_9_18_1
  doi: 10.1128/JB.188.3.1081-1088.2006
– ident: e_1_2_9_31_1
  doi: 10.1021/es070298u
SSID ssj0017370
Score 2.4368298
Snippet Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1538
SubjectTerms Anoxia
Arsenates
Arsenic
Arsenite
Arsenites
Bacteria
Biogeochemistry
carbon
Carbon sources
Ecosystem
Gene sequencing
Genomes
malates
Microbiological strains
microbiology
multigene family
oxidants
Oxidase
Oxidation
Oxidation-Reduction
Oxidizing agents
Oxidoreductases
paddies
paddy soils
Photosynthesis
Rhodobacter
Rhodobacter - genetics
Rhodobacter capsulatus
rice
Rice fields
Soil
Soil contamination
Soil pollution
Soils
Speciation
Transcription
Title Anoxygenic phototrophic arsenite oxidation by a Rhodobacter strain
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.16380
https://www.ncbi.nlm.nih.gov/pubmed/36978205
https://www.proquest.com/docview/2844575640
https://www.proquest.com/docview/2792502084
https://www.proquest.com/docview/2887620672
https://pubmed.ncbi.nlm.nih.gov/PMC10676076
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4iCF58P-qLCh68tLRNNm2PKi7iwYMoeCtJmtBFaZfdLqi_3pn0geuiIt7aZkLzmEm-aabfEHIWylylaWQ8cJGNB6sk9aShmBKQURFq0Clpoy3u-M0ju30adNGE-C9Mww_Rf3BDy7DrNRq4kNNPRg4mHnmYa8lHSIFeO0ZsISy67wmkwpjadHGtbBi15D4Yy_Ol_vy-tAA2F2MmP2NZuxkN14nsutHEoDz7s1r66v0Lw-O_-rlB1lqo6l40urVJlnS5RVaa5JVv2-TyooS3g_6NlDsuqrqqJ9W4gBtwlTUiWbd6HTUZm1z55gr3vgAXWFp2aHdqU1PskMfh9cPVjddmZPDUAE_NRZ4qARBFRJIznZs4UVGQJlohb18ktZCBAAAhKTN5AA-MSnjKQx1QbXSgQ7pLlsuq1PvEpeCo0FjHiumEMaOkTGVOTc5zZWKmuEP8bj4y1dKVY9Ness5twYHJcGAyOzAOOe8rjBumju9Fj7oJzlqTnWawTzPArpxB8WlfDMaGJyii1NUMZOIUIGMUJOwHmQQ3GDzhdsheozN9eyhPkZ9w4JBkTpt6AST7ni8pR4Ul_UaqPx7EOC5WW37rYwZmbC8O_lrhkKxGgOSaKMcjslxPZvoYkFctT6xxfQA6VyHz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5tAEB5Vjqr20vfDTdpQqYdcsIBdL3BMolpu6_hg2ZJviF12ZSsRWDaW6vz6zCwY-aE2qnoDdoB9zLDf7A7fAHzzZabiODAuusjGxa8kc6VhlBKQs9TXqFPSRlsMRX_Cf067051_YSp-iGbBjSzDfq_JwGlBesfK0cYDl5ItdQhToNt-Qnm9rVs1aiik_JDZhHG1sB_U9D4UzXPwgP2Z6QhuHkdN7qJZOx31XoLaNqSKQrntrEvZUfcHHI__19JX8KJGq85lpV6v4YnO38DTKn_l5i1cXeb4elTBuXIWs6IsymWxmOEJesuawKxT_J5XSZscuXFSZzRDL1hagmhnZbNTvINJ7_v4uu_WSRlc1aWN8zSLVYooJQ2k4DozYaQCL460Iuq-QOpUeiliCMm4yTy8YFQkYuFrj2mjPe2z99DKi1x_BIehr8JCHSquI86NkjKWGTOZyJQJuRJt6GwHJFE1YzlV7S7Zei7UMQl1TGI7pg0XzQ2Liqzjz6Jn2xFOaqtdJThVc4SvgmPx16YY7Y02UdJcF2uUCWNEjYEX8b_IRDTH0CZ3Gz5UStPUh4mYKAq7bYj21KkRIL7v_ZJ8PrO838T2J7yQ-sWqy2NtTNCS7cGnf73hHJ71xzeDZPBj-OsUngcI7KqgxzNolcu1_oxArJRfrKU9AFGtJg4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEB7KlpZe-ty22c22LvTQi4NtKbJ9zDYb0gehhAZ6M5YskbDFDokDm_31OyM_yIO2LL3Z1sjWY8b6xhp_A_DRl5mK48C46CIbF9-SzJWGUUpAzlJfo05JG20xEeMZ__qr30QT0r8wFT9E-8GNLMO-r8nAl5nZMXI08cClXEs9ghTotT_kwotIsYfTlkHKD5nNF1cL-0HN7kPBPAc32F-YjtDmcdDkLpi1q9HoGcimH1UQynVvU8qeuj2gePyvjj6HpzVWdQaVcr2ABzp_CY-q7JXbV3A5yPHpqIAL5SznRVmUq2I5xxP0lTVBWae4WVQpmxy5dVJnOkcfWFp6aGdtc1Ocwmx09fPz2K1TMriqT9vmaRarFDFKGkjBdWbCSAVeHGlFxH2B1Kn0UkQQknGTeXjBqEjEwtce00Z72mev4SQvcv0WHIaeCgt1qLiOODdKylhmzGQiUybkSnSg18xHomq-cmra76TxW2hgEhqYxA5MBz61FZYVVcefRbvNBCe1za4TXKg5glfBsfhDW4zWRlsoaa6LDcqEMWLGwIv4X2QiWmFoi7sDbyqdadvDREwEhf0ORHva1AoQ2_d-Sb6YW9Zv4voTXkjjYrXlX31M0I7twdl9K7yHxz-Go-T7l8m3c3gSIKqrIh67cFKuNvoCUVgp31k7uwPU7CTG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anoxygenic+phototrophic+arsenite+oxidation+by+a+Rhodobacter+strain&rft.jtitle=Environmental+microbiology&rft.au=Wu%2C+Yi%E2%80%90Fei&rft.au=Chen%2C+Jian&rft.au=Xie%2C+Wan%E2%80%90Ying&rft.au=Peng%2C+Chao&rft.date=2023-08-01&rft.issn=1462-2912&rft.volume=25&rft.issue=8+p.1538-1548&rft.spage=1538&rft.epage=1548&rft_id=info:doi/10.1111%2F1462-2920.16380&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon