Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations

This idealized modeling study of moist baroclinic waves addresses the formation of moist ascending airstreams, so-called warm conveyor belts (WCBs), their characteristics, and their significance for the downstream flow evolution. Baroclinic wave simulations are performed on the f plane, growing from...

Full description

Saved in:
Bibliographic Details
Published inJournal of the atmospheric sciences Vol. 70; no. 2; pp. 627 - 652
Main Authors SCHEMM, Sebastian, WERNLI, Heini, PAPRITZ, Lukas
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 01.02.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This idealized modeling study of moist baroclinic waves addresses the formation of moist ascending airstreams, so-called warm conveyor belts (WCBs), their characteristics, and their significance for the downstream flow evolution. Baroclinic wave simulations are performed on the f plane, growing from a finite-amplitude upper-level potential vorticity (PV) perturbation on a zonally uniform jet stream. This nonmodal approach allows for dispersive upstream and downstream development and for studying WCBs in the primary cyclone and the downstream cyclone. A saturation adjustment scheme is used as the only difference between the dry and moist simulations, which are systematically compared using a cyclone-tracking algorithm, with an eddy kinetic energy budget analysis, and from a PV perspective. Using trajectories and a selection criterion of maximum ascent, forward- and rearward-sloping WCBs in the moist simulation are identified. No WCB is identified in the dry simulation. Forward-sloping WCBs originate in the warm sector, move into the frontal fracture region, and ascend over the bent-back front, where maximum latent heating occurs in this simulation. The outflow of these WCBs is located at altitudes with prevailing zonal winds; they hence flow anticyclonically ("forward") into the downstream ridge. In case of a slightly weaker ascent, WCBs curve cyclonically ("rearward") above the cyclone center. A detailed analysis of the PV evolution along the WCBs reveals PV production in the lower troposphere and destruction in the upper troposphere. Consequently, WCBs transport low-PV air into their outflow region, which contributes to the formation of distinct negative PV anomalies. They, in turn, affect the downstream flow and enhance downstream cyclogenesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-4928
1520-0469
DOI:10.1175/jas-d-12-0147.1