Knockout of Density-Enhanced Phosphatase-1 Impairs Cerebrovascular Reserve Capacity in an Arteriogenesis Model in Mice

Collateral growth, arteriogenesis, represents a proliferative mechanism involving endothelial cells, smooth muscle cells, and monocytes/macrophages. Here we investigated the role of Density-Enhanced Phosphatase-1 (DEP-1) in arteriogenesis in vivo, a protein-tyrosine-phosphatase that has controversia...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2013; no. 2013; pp. 1 - 9
Main Authors Böhmer, Frank-D., Buschmann, Ivo, Kappert, Kai, Ritter, Zully, Blaschke, Florian, Nagorka, Stephanie, Hillmeister, Philipp, Krüger, Janine, Gatzke, Nora, Dülsner, André, Hackbusch, Daniel, Thöne-Reineke, Christa
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2013
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Collateral growth, arteriogenesis, represents a proliferative mechanism involving endothelial cells, smooth muscle cells, and monocytes/macrophages. Here we investigated the role of Density-Enhanced Phosphatase-1 (DEP-1) in arteriogenesis in vivo, a protein-tyrosine-phosphatase that has controversially been discussed with regard to vascular cell biology. Wild-type C57BL/6 mice subjected to permanent left common carotid artery occlusion (CCAO) developed a significant diameter increase in distinct arteries of the circle of Willis, especially in the anterior cerebral artery. Analyzing the impact of loss of DEP-1 function, induction of collateralization was quantified after CCAO and hindlimb femoral artery ligation comparing wild-type and DEP-1−/− mice. Both cerebral collateralization assessed by latex perfusion and peripheral vessel growth in the femoral artery determined by microsphere perfusion and micro-CT analysis were not altered in DEP-1−/− compared to wild-type mice. Cerebrovascular reserve capacity, however, was significantly impaired in DEP-1−/− mice. Cerebrovascular transcriptional analysis of proarteriogenic growth factors and receptors showed specifically reduced transcripts of PDGF-B. SiRNA knockdown of DEP-1 in endothelial cells in vitro also resulted in significant PDGF-B downregulation, providing further evidence for DEP-1 in PDGF-B gene regulation. In summary, our data support the notion of DEP-1 as positive functional regulator in vascular cerebral arteriogenesis, involving differential PDGF-B gene expression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Academic Editor: Goutam Ghosh Choudhury
ISSN:2314-6133
2314-6141
DOI:10.1155/2013/802149