Role of Src Signal Transduction Pathways in Scatter Factor-mediated Cellular Protection

Scatter factor (SF) (hepatocyte growth factor) is a pleiotrophic cytokine that accumulates in tumors, where it may induce invasion, angiogenesis, and chemoresistance. We have studied the mechanisms by which SF and its receptor (c-Met) protect cells against the DNA-damaging agent adriamycin (ADR) as...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 284; no. 12; pp. 7561 - 7577
Main Authors Fan, Saijun, Meng, Qinghui, Laterra, John J., Rosen, Eliot M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.03.2009
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Scatter factor (SF) (hepatocyte growth factor) is a pleiotrophic cytokine that accumulates in tumors, where it may induce invasion, angiogenesis, and chemoresistance. We have studied the mechanisms by which SF and its receptor (c-Met) protect cells against the DNA-damaging agent adriamycin (ADR) as a model for chemoresistance of SF/c-Met-overexpressing tumors. Previous studies identified a phosphatidylinositol 3-kinase/c-Akt/Pak1/NF-κB cell survival pathway in DU-145 prostate cancer and Madin-Darby canine kidney epithelial cells. Here we studied Src signaling pathways involved in SF cell protection. Src enhanced basal and SF stimulated NF-κB activity and SF protection against ADR, in a manner dependent upon its kinase and Src homology 3 domains; and endogenous Src was required for SF stimulation of NF-κB activity and cell protection. The ability of Src to enhance SF stimulation of NF-κB activity was due, in part, to its ability to stimulate Akt and IκB kinase activity; and Src-mediated stimulation of NF-κB was due, in part, to a Rac1/MKK3/6/p38 pathway and was Akt-dependent. SF caused the activation of Src and the Rac1 effector Pak1. Furthermore, SF induced activating phosphorylations of MKK3, MKK6, and p38 within the c-Met signalsome in an Src-dependent manner. The NF-κB-inducing kinase was found to act downstream of TAK1 (transforming growth factor-β-activated kinase 1) as a mediator of SF- and Src-stimulated NF-κB activity. Finally, the Src/Rac1/MKK3/6/p38 and Src/TAK1/NF-κB-inducing kinase pathways exhibited cross-talk at the level of MKK3. These findings delineate some novel signaling pathways for SF-mediated resistance to ADR.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M807497200