Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete

This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 182; no. 1; pp. 191 - 196
Main Authors Yang, Sheng-Fu, Wang, To-Mai, Lee, Wen-Cheng, Sun, Kin-Seng, Tzeng, Chin-Ching
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.10.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2010.06.014