The effect of glottal angle on intraglottal pressure

Intraglottal pressure distributions depend upon glottal shape, size, and diameter. This study reports the effects of varying glottal angle on intraglottal and transglottal pressures using a three-dimensional Plexiglas model with a glottis having nine symmetric glottal angles and a constant minimal g...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 119; no. 1; p. 539
Main Authors Li, Sheng, Scherer, Ronald C, Wan, MingXi, Wang, SuPin, Wu, HuiHui
Format Journal Article
LanguageEnglish
Published United States 01.01.2006
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Intraglottal pressure distributions depend upon glottal shape, size, and diameter. This study reports the effects of varying glottal angle on intraglottal and transglottal pressures using a three-dimensional Plexiglas model with a glottis having nine symmetric glottal angles and a constant minimal glottal diameter of 0.06 cm. The empirical data were supported by computational results using FLUENT. The results suggested that (1) the greater the convergent glottal angle, the greater outward driving forces (higher intraglottal pressures) on the vocal folds; (2) flow resistance was greatest for the uniform glottis, and least for the 10 degrees divergent glottis; (3) the greatest negative pressure in the glottis and therefore the greatest pressure recovery for diverging glottal shapes occurred for an angle of 10 degrees; (4) the smaller the convergent angle, the greater the flow resistance; (5) FLUENT was highly accurate in predicting the empirical pressures of this model; (6) flow separation locations (given by FLUENT) for the divergent glottis moved upstream for larger flows and larger glottal angles. The results suggest that phonatory efficiency related to aerodynamics may be enhanced with vocal fold oscillations that include large convergent angles during glottal opening and small (5 degrees - 10 degrees) divergent angles during glottal closing.
ISSN:0001-4966
DOI:10.1121/1.2133491