Intercontinental karyotype–environment parallelism supports a role for a chromosomal inversion in local adaptation in a seaweed fly

Large chromosomal rearrangements are thought to facilitate adaptation to heterogeneous environments by limiting genomic recombination. Indeed, inversions have been implicated in adaptation along environmental clines and in ecotype specialization. Here, we combine classical ecological studies and pop...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 285; no. 1881; p. 20180519
Main Authors Mérot, Claire, Berdan, Emma L., Babin, Charles, Normandeau, Eric, Wellenreuther, Maren, Bernatchez, Louis
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 27.06.2018
The Royal Society
EditionRoyal Society (Great Britain)
Subjects
Online AccessGet full text
ISSN0962-8452
1471-2954
1471-2954
DOI10.1098/rspb.2018.0519

Cover

More Information
Summary:Large chromosomal rearrangements are thought to facilitate adaptation to heterogeneous environments by limiting genomic recombination. Indeed, inversions have been implicated in adaptation along environmental clines and in ecotype specialization. Here, we combine classical ecological studies and population genetics to investigate an inversion polymorphism previously documented in Europe among natural populations of the seaweed fly Coelopa frigida along a latitudinal cline in North America. We test if the inversion is present in North America and polymorphic, assess which environmental conditions modulate the inversion karyotype frequencies, and document the relationship between inversion karyotype and adult size. We sampled nearly 2000 flies from 20 populations along several environmental gradients to quantify associations of inversion frequencies to heterogeneous environmental variables. Genotyping and phenotyping showed a widespread and conserved inversion polymorphism between Europe and America. Variation in inversion frequency was significantly associated with environmental factors, with parallel patterns between continents, indicating that the inversion may play a role in local adaptation. The three karyotypes of the inversion are differently favoured across micro-habitats and represent life-history strategies likely to be maintained by the collective action of several mechanisms of balancing selection. Our study adds to the mounting evidence that inversions are facilitators of adaptation and enhance within-species diversity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.4127378.
These authors share equal authorship.
ISSN:0962-8452
1471-2954
1471-2954
DOI:10.1098/rspb.2018.0519