Interdecadal Variability of Western North Pacific Tropical Cyclone Tracks
This study examines the interdecadal variability of the tropical cyclone (TC) tracks over the western North Pacific (WNP) during the 1960–2005 period. An empirical orthogonal function analysis of the 10-yr Gaussian-filtered annual frequency of TC occurrence shows three leading modes of TC occurrence...
Saved in:
Published in | Journal of climate Vol. 21; no. 17; pp. 4464 - 4476 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston, MA
American Meteorological Society
01.09.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study examines the interdecadal variability of the tropical cyclone (TC) tracks over the western North Pacific (WNP) during the 1960–2005 period. An empirical orthogonal function analysis of the 10-yr Gaussian-filtered annual frequency of TC occurrence shows three leading modes of TC occurrence patterns. The first mode is related to the variation of TC activity in the areas near Japan and its east. The second mode is characterized by a northeast–southwest dipole of TC occurrence anomalies along the southeast coast of China and an east–west dipole near Japan and its east. The third mode is similar to the second mode, except for the absence of the east–west dipole. These patterns are shown to be related to the decadal changes in the prevailing TC tracks.
Two characteristic flow patterns related to the first and third modes of TC occurrence pattern are identified. The first pattern is characterized by a north–south dipole of 500-hPa geopotential anomalies over the WNP. Such a pattern may affect the strength and westward extension of the subtropical high and the midlevel steering flow and hence the TC occurrence pattern. The Pacific decadal oscillation (PDO) is found to display a similar dipole-like structure. The decadal variability of TC tracks may therefore be partly attributed to the PDO signal. The second characteristic pattern shows a series of anomalous midlevel atmospheric circulations extending from the sea east of Japan to the south coast of China, which may explain the other part of the decadal variations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/2008jcli2207.1 |