Microstructure and Properties of Thermally Sprayed Al-Sn-Based Alloys for Plain Bearing Applications

Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternati...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal spray technology Vol. 15; no. 4; pp. 634 - 639
Main Authors Marrocco, T, Driver, L C, Harris, S J, McCartney, D G
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.12.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the mi-crostructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ISSN:1059-9630
1544-1016
DOI:10.1361/105996306X147009