Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver

A low stringency polymerase chain reaction (PCR) homology screening procedure was used to probe a mouse liver cDNA library to identify novel inward rectifier K + channel genes. A single gene (mLV1) was identified that exhibited extensive sequence homology with previously cloned inward rectifier K +...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 514; no. 3; pp. 639 - 653
Main Authors Pearson, Wade L., Dourado, Michelle, Schreiber, Matthew, Salkoff, Lawrence, Nichols, Colin G.
Format Journal Article
LanguageEnglish
Published Oxford, UK The Physiological Society 01.02.1999
Blackwell Science Ltd
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A low stringency polymerase chain reaction (PCR) homology screening procedure was used to probe a mouse liver cDNA library to identify novel inward rectifier K + channel genes. A single gene (mLV1) was identified that exhibited extensive sequence homology with previously cloned inward rectifier K + channel genes. The mLV1 gene showed greatest sequence identity with genes belonging to the Kir4 subfamily. The amino acid sequence of mLV1 was 96 % identical to a Kir channel cloned from human kidney (hKir4.2), and ≈60 % identical to the Kir4.1 channel cloned from human and rat, so that mLV1 was classified as mKir4.2. Xenopus oocytes injected with cRNA encoding mKir4.2 displayed a large inwardly rectifying K + current, while control oocytes injected with H 2 O displayed no similar K + current. The current was blocked by Ba 2+ and Cs + in a voltage-dependent fashion and displayed inward rectification that was intermediate between that of the strong inward rectifier Kir2.1 and the weak inward rectifier Kir1.1. The current was weakly blocked by TEA in a voltage-independent fashion. mKir4.2 current was subject to modulation by several distinct mechanisms. Intracellular acidification decreased mKir4.2 current in a reversible fashion, while activation of protein kinase C decreased mKir4.2 current in a manner that was not rapidly reversible. Incubation of oocytes in elevated [K + ] produced a slowly developing enhancement of current. Oocytes co-injected with cRNA for mKir4.2 and Kir5.1, a protein that does not form functional homomeric channels, displayed membrane currents with properties distinct from those expressing mKir4.2 alone. Co-injected oocytes displayed larger currents than mKir4.2, with novel kinetic properties and an increased sensitivity to Ba 2+ block at negative potentials, suggesting that mKir4.2 forms functional heteromultimeric channels with Kir5.1, as has been shown for Kir4.1 These results demonstrate for the first time that a Kir4.2 channel gene product forms functional channels in Xenopus oocytes, that these Kir channels display novel properties, and that Kir4.2 subunits may be responsible for physiological modulation of functional Kir channels.
Bibliography:Author's present address
M. Dourado: University of California, San Francisco, Department of Stomatology, 513 Parnassus Street, San Francisco, CA 94143‐0512, USA.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author's present address M. Dourado: University of California, San Francisco, Department of Stomatology, 513 Parnassus Street, San Francisco, CA 94143-0512, USA.
ISSN:0022-3751
1469-7793
DOI:10.1111/j.1469-7793.1999.639ad.x