Effects of preparation methods on the bone formation potential of apatite-coated chitosan microspheres
To investigate the effects of preparation methods on the bone formation potential of apatite-coated chitosan microspheres, coacervate precipitation method and emulsion cross-linking method were chosen to prepare chitosan microspheres, and then apatite coatings were deposited using simulated body flu...
Saved in:
Published in | Journal of biomaterials science. Polymer ed. Vol. 25; no. 18; pp. 2080 - 2093 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
12.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To investigate the effects of preparation methods on the bone formation potential of apatite-coated chitosan microspheres, coacervate precipitation method and emulsion cross-linking method were chosen to prepare chitosan microspheres, and then apatite coatings were deposited using simulated body fluid. Rat bone marrow-derived mesenchymal stem cells (BMSCs) were seeded on these microspheres. Cell adhesion, proliferation, and differentiation potential were monitored. For in vivo analysis, some cell/microsphere constructs were implanted in the subcutaneous pockets of male Wistar rats. After 3, 6, 12 weeks, the samples were retrieved and stained with hematoxylin and eosin (HE). Some cell/microsphere constructs were implanted in the calvarial defects of rats. Micro-CT and HE analysis were performed to analyze the new bone formation. It was found that BMSCs on apatite-coated emulsion cross-linked microspheres (EM1) exhibited better proliferation and differentiation than cells on apatite-coated coacervate-precipitated microspheres. The in vivo results showed that no bone was observed in ectopic areas. While in calvarial defects, both histological slices and Micro-CT images demonstrated that a substantial amount of new bone was formed in the EM1/BMSCs construct. These data suggest that preparation methods do exert great influence on the in vitro cell behaviors and in vivo orthotopic bone regeneration of apatite-coated chitosan microspheres. Appropriate method should be considered when preparing chitosan microspheres for bone tissue engineering scaffold. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0920-5063 1568-5624 |
DOI: | 10.1080/09205063.2014.970604 |