Kaempferol Protects Cell Damage in In Vitro Ischemia Reperfusion Model in Rat Neuronal PC12 Cells

Ischemic cerebral stroke is a severe neurodegenerative disease with high mortality. Ischemia and reperfusion injury plays a fundamental role in ischemic cerebral stroke. To date, the strategy for ischemic cerebral stroke treatment is limited. In the present study, we aimed to investigate the effect...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2020; no. 2020; pp. 1 - 10
Main Authors Zhou, Ya-ping, Li, Guo-chun
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ischemic cerebral stroke is a severe neurodegenerative disease with high mortality. Ischemia and reperfusion injury plays a fundamental role in ischemic cerebral stroke. To date, the strategy for ischemic cerebral stroke treatment is limited. In the present study, we aimed to investigate the effect of kaempferol (KFL), a natural flavonol, on cell injury induced by oxygen and glucose deprivation (OGD) and reoxygenation (OGD-reoxygenation) in PC12 cells. We found that KFL inhibited OGD-induced decrease of cell viability and the increase of lactate dehydrogenase (LDH) release. OGD-induced activation of mitochondrial dysfunction, mitochondrial apoptotic pathway, and apoptosis was inhibited by KFL. KFL also reduced OGD-induced oxidative stress in PC12 cells. P66shc expression and acetylation were increased by OGD and KFL inhibited these changes. Upregulation of P66shc suppressed KFL-induced decrease of apoptosis, the decrease of LDH release, and the increase of cell viability. Furthermore, KFL inhibited OGD-induced decrease of sirtuin 1 (SIRT1) expression and downregulation of SIRT1 blocked KFL-induced decrease of apoptosis, the decrease of LDH release, and the increase of cell viability. In summary, we identified that KFL exhibited a beneficial effect against OGD-induced cytotoxicity in an ischemia/reperfusion injury cell model. The findings suggest that KFL may be a promising choice for the intervention of ischemic stroke and highlighted the SIRT1/P66shc signaling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Gelin Xu
ISSN:2314-6133
2314-6141
DOI:10.1155/2020/2461079