Morphology-Dependent Behavior of PVDF/ZnO Composites: Their Fabrication and Application in Pressure Sensors
This study investigated the impact of zinc oxide’s (ZnO’s) morphology on the piezoelectric performance of polyvinylidene fluoride (PVDF) composites for flexible sensors. Rod-like (NR) and sheet-like (NS) ZnO nanoparticles were synthesized via hydrothermal methods and incorporated into PVDF through d...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 9; p. 2936 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.05.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study investigated the impact of zinc oxide’s (ZnO’s) morphology on the piezoelectric performance of polyvinylidene fluoride (PVDF) composites for flexible sensors. Rod-like (NR) and sheet-like (NS) ZnO nanoparticles were synthesized via hydrothermal methods and incorporated into PVDF through direct ink writing (DIW). The structural analyses confirmed the successful formation of wurtzite ZnO and enhanced β-phase content in the PVDF/ZnO composites. At a degree of 15 wt% loading, the ZnO-NS nanoparticles achieved the highest β-phase fraction (81.3%) in PVDF due to their high specific surface area, facilitating dipole alignment and strain-induced crystallization. The optimized PVDF/ZnO-NS-15 sensor demonstrated superior piezoelectric outputs (4.75 V, 140 mV/N sensitivity) under a 27 N force, outperforming its ZnO-NR counterparts (3.84 V, 100 mV/N). The cyclic tests revealed exceptional durability (<5% signal attenuation after 1000 impacts) and a rapid response (<100 ms). The application trials validated their real-time motion-monitoring capabilities, including finger joint flexion detection. This work highlights the morphology-dependent interfacial polarization as a critical factor for high-performance flexible sensors, offering a scalable DIW-based strategy for wearable electronics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s25092936 |