Residual stress in hydroxyapatite coating: nonlinear analysis and high-energy synchrotron measurements

The thermal deposition of hydroxyapatite (HA) on titanium alloy substrate (Ti-6Al-4V) leads to a structure that has very good osseointegration properties. However, clinical failures have been occasionally reported at the interface between substrate and coating. Lifetime is the main parameter in such...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 52; no. 7; pp. 1161 - 1166
Main Authors Fogarassy, P., Cofino, B., Millet, P., Lodini, A.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The thermal deposition of hydroxyapatite (HA) on titanium alloy substrate (Ti-6Al-4V) leads to a structure that has very good osseointegration properties. However, clinical failures have been occasionally reported at the interface between substrate and coating. Lifetime is the main parameter in such prostheses; therefore, in order to improve their quality, it is necessary to evaluate the level of stresses near the interface. The high-energy synchrotron radiation combines the advantages of a bulk analysis and reduced volume of the gauge. The objective of our study was to calculate the residual stress using a nonlinear finite-element model and to measure residual stress level near the interface, in the hydroxyapatite coating and in titanium alloy substrate with a nondestructive and high-resolution experiment. The high-energy synchrotron radiation of the BM16 beam-line at ESRF (Grenoble-France) was used with a resolution of down to 10 micrometers. The experimental measurements validate the results found by means of nonlinear finite-element analysis of the plasma spraying induced stress.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2005.847526