Effect of stress corrosion cracking on stress–strain response of steel wires used in prestressed concrete beams

This paper presents an experimental study of the stress corrosion cracking (SCC) process on 8-mm-diameter wires which are used industrially in precast concrete prestressed by pre-tension. The service life of steel wires under accelerated SCC and the reduction of their mechanical performance are stud...

Full description

Saved in:
Bibliographic Details
Published inCorrosion science Vol. 51; no. 6; pp. 1453 - 1459
Main Authors Vu, Ngoc Anh, Castel, Arnaud, François, Raoul
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents an experimental study of the stress corrosion cracking (SCC) process on 8-mm-diameter wires which are used industrially in precast concrete prestressed by pre-tension. The service life of steel wires under accelerated SCC and the reduction of their mechanical performance are studied. A dynamic analysis to detect the damage to corroded wire due to SCC before brittle failure and the influence of internal defects on the service life of stress corroded wire are also presented. The study shows that stress corrosion cracking is characterized by an evolution to SCC from pitting corrosion attacks that result in the development of both micro-cracking and micro-voids in the steel bulk. The stress level does not influence the composition of corrosion products. It is a major factor of SCC development, leading to a considerable reduction in the ultimate strain and thus to brittle failure of the corroded wires. Local defects on the steel surface increase the SCC effect due to stress corrosion concentration. A reduction in the elastic modulus and the elastic limit, which may reach 25% and 15%, respectively, can be expected due to steel micro-cracking. No damage detection through mechanical analysis seems possible before the brittle failure occurs as the corrosion is very localized and so does not globally reduce the tension in the wires.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0010-938X
1879-0496
DOI:10.1016/j.corsci.2009.03.033