Performance of Quality Assurance Procedures for an Applied Climate Information System
Valid data are required to make climate assessments and to make climate-related decisions. The objective of this paper is threefold: to introduce an explicit treatment of Type I and Type II errors in evaluating the performance of quality assurance procedures, to illustrate a quality control approach...
Saved in:
Published in | Journal of atmospheric and oceanic technology Vol. 22; no. 1; pp. 105 - 112 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
American Meteorological Society
01.01.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Valid data are required to make climate assessments and to make climate-related decisions. The objective of this paper is threefold: to introduce an explicit treatment of Type I and Type II errors in evaluating the performance of quality assurance procedures, to illustrate a quality control approach that allows tailoring to regions and subregions, and to introduce a new spatial regression test. Threshold testing, step change, persistence, and spatial regression were included in a test of three decades of temperature and precipitation data at six weather stations representing different climate regimes. The magnitude of thresholds was addressed in terms of the climatic variability, and multiple thresholds were tested to determine the number of Type I errors generated. In a separate test, random errors were seeded into the data and the performance of the tests was such that most Type II errors were made in the range of c1'C for temperature, not too different from the sensor field accuracy. The study underscores the fact that precipitation is more difficult to quality control than temperature. The new spatial regression test presented in this document outperformed all the other tests, which together identified only a few errors beyond those identified by the spatial regression test. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0739-0572 1520-0426 |
DOI: | 10.1175/JTECH-1657.1 |